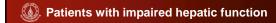

(() Traditional antiepileptic drugs Phenobarbital ❖ Phenytoin

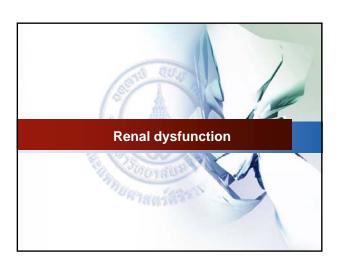
- ❖ Carbamazepine
- ❖ Sodium valproate
- ❖ Benzodiazepine

(). New antiepileptic drugs ❖ Felbamate (1993) ❖ Gabapentin (1993) ❖ Lamotrigine (1994) ❖ Topiramate (1996) ❖ Tiagabine (1997) Levetiracetam (1999) Oxcarbazepine (2000) ❖ Zonisamide (2000) ❖ Pregabalin (2005) Vigabatrin

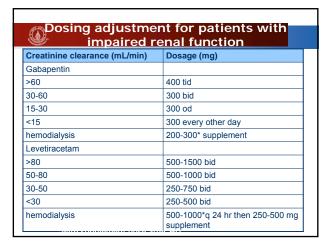
Effects	Older AEDs	New AEDs
Measurable increased in	PHT	-
free fraction with hypoalbuminemia	VPA	
Metabolism affected by	PB	GBP, LEV,
renal disease		TPM
Metabolism affected by	CBZ, PHT,	LTG, ZNS,
liver disease	VPA	OXC, TGB
•		

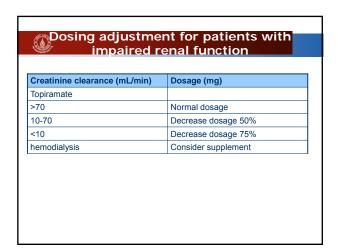

Dosing adjustment for patients with impaired hepatic function

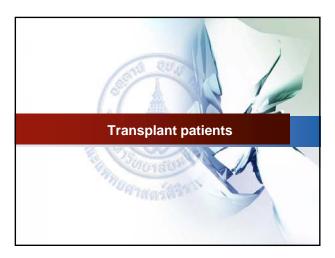
There is insufficient information available to make recommendations on the necessity of dosage adjustment

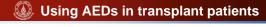


Patients with impaired hepatic function

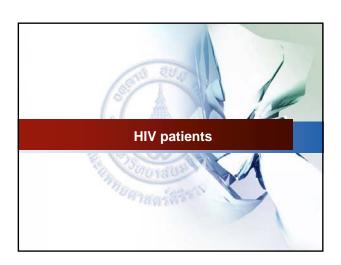

Free fractions of diazepam, PHT, and VPA increase as a result of reduced circulating albumin concentrations. Frequent serum determinations of free fractions and gradual dose regulations are required.




- Caution should be taken if VPA is used inpatients with liver disease.
- Hepatic dysfunction is less of a concern with PB, gabapentin, levetiracetam, topiramate, and zonisamide.



Effects	Older AEDs	New AEDs
Measurable increased in	PHT	-
free fraction with hypoalbuminemia	VPA	
Metabolism affected by	PB	GBP, LEV,
renal disease		TPM
Metabolism affected by	CBZ, PHT,	LTG, ZNS,
liver disease	VPA	OXC, TGB



- CBZ, oxcarbazepine, PB, and PHT may reduce cyclosporine, tacrolimus, and corticosteroid blood levels with a delayed effect of up to 10 days.
- Azathioprine, mycophenolate mofetil, and OKT3 metabolism are not significantly affected by AEDs.

Drug	Protein Binding (%)	Metabolism
Older AEDs		
Phenobarbital	45	CYP450
Phenytoin	90	CYP450-2C
Carbamazepine	~75	CYP450-3A, 2C
Valproate	90	Gluc
Newer AEDs		
Gabapentin	Minimal	Nil
Lamotrigine	55	Gluc, CYP450
Oxcarbazepine	40	Gluc, CYP450
Topiramate	Minimal	CYP450-3A
Levetiracetam	Minimal	Enzymatic hydrolysis
Tiagabine	96	Hydrolysis
Zonisamide	Minimal	Gluc, CYP450
Pregabalin	Minimal	Negligible
HAART		
NRTI	Minimal to ~38	Glue
NNRTI	50-99	CYP450
PI	>90	CYP450

SPECIAL REPORT Antiepileptic drug selection for people with HIV/AIDS: Evidence-based guidelines from the ILAE and AAN *|Gretchen L. Birbeck, t]sacqueline A. French, §Emilio Perucca, ¶David M. Simpson, #Henry Fraimow, **Jomy M. George, ††Jason F. Okulicz, ‡†David B. Clifford, §§Houda Hachad, and §§René H. Levy for the Quality Standards subcommittee of the American Academy of Neurology and the ad hot cask force of the Commission on Therapeutic Strategies of the International League Against Epilepsy Epilepsia, 53(1):207–214, 2012

<u>(()</u>,

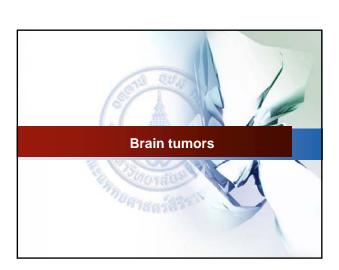
Recommendations

- AED-ARV administration may be indicated in up to 55% of people taking ARVs.
- Patients receiving phenytoin may require a lopinavir/ritonavir dosage increase of approximately 50% to maintain unchanged serum concentrations (Level C: one class II study).
- Patients receiving valproic acid may require a zidovudine dosage reduction to maintain unchanged serum zidovudine concentrations (Level C).
- Coadministration of valproic acid and efavirenz may not require efavirenz dosage adjustment (Level C: one class II study).

Epilepsia, 53(1):207-214, 2012

Recommendations

Patients may be counseled that it is unclear whether dosage adjustment is necessary when other AEDs and ARVs are combined (Level U).


Epilepsia, 53(1):207-214, 2012

Recommendations

It may be important to avoid enzyme inducing AEDs in people on ARV regimens that include protease inhibitors or non nucleoside reverse transcriptase inhibitors because pharmacokinetic interactions may result in virologic failure, which has clinical implications for disease progression and development of ARV resistance. If such regimens are required for seizure control, patients may be monitored through pharmacokinetic assessments to ensure efficacy of the ARV regimen (Level C: one class II study).

Epilepsia, 53(1):207-214, 2012

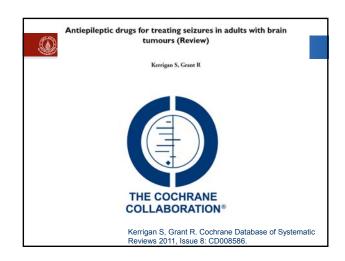
Patients with brain tumors

Based on observations from randomized studies, prophylactic use of AEDs is not recommended. After brain surgery, AEDS can be discontinued after 1 week in patients without a history of previous seizure

Glantz MJ, Cole BF, Forsyth PA, et al. Neurology 2000; 54:1886–93.

Potentials interaction between AEDs and chemotherapy

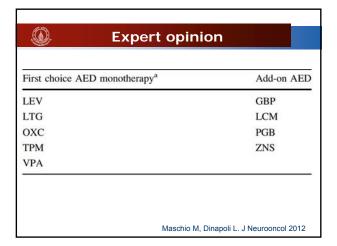
- Enzyme inducing AEDs have been shown to have effects on levels of chemotherapy that metabolite through CYP 450
- Taxanes, vinca alkaloids, methotrexate, teniposide, and camptothecin analogues such as irinotecan

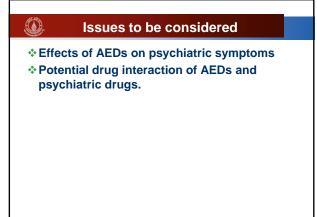

Vecht CJ, Wagner GL, Wilms EB. Lancet Neurol 2003;2:404-9.

Potentials interaction between AEDs and chemotherapy

- In a study of 716 children with ALL, 40 children who were on enzyme-inducing AEDs had worse event-free survival (hazard ratio 2.67 [95% CI, 1.50 to 4.76]), hematological relapse (3.40 [1.69 to 6.88]) and CNS relapse (2.90 [1.01 to 8.28]).
- These children were found to have a higher clearance of teniposide and methotrexate.

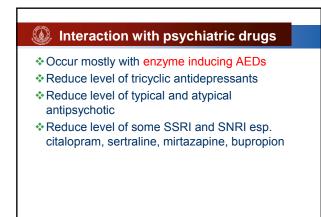
Relling MV, Pui CH, Sandlund JT, et al. Lancet 2000;356:285-90

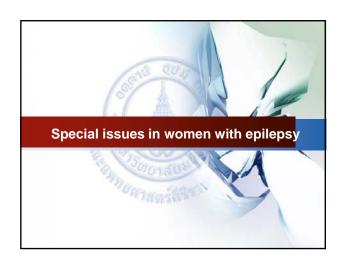


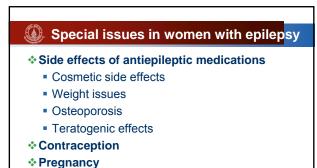

Authors' conclusion

- There is a lack of robust, randomised, controlled evidence to support the choice of antiepileptic drug for the treatment of seizures in adults with brain tumours.
- While some authors support the use of non enzymeinducing antiepileptic drugs, reliable, comparative evidence to provide clinical justification for this is limited.
- There is a need for further large, randomised, controlled trials in this area.

Kerrigan S, Grant R. Cochrane Database of Systematic Reviews 2011, Issue 8: CD008586.

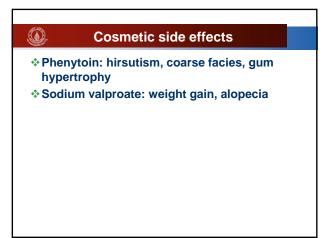


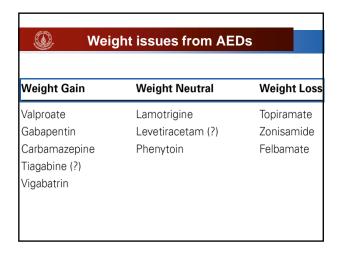



γ-Aminobutyric acid (GABA)-ergic AEDs **VGB** Sedative, anxiolytic, **TGB** antimanic properties promote depression PB **BZD** VPA (multiple actions) Antiglutamatergic AEDs LTG Activating anxiety-promoting **FBM** Antidepressive effects **TPM**

Selecting AEDs in patients with psychiatric comorbidities			
Avoid	Consider		
-	LTG, CBZ, OXC, PHT, VPA		
FLB, LEV, LTG, TGB	BZD, GBP, PBG		
Barbiturates, LEV, PGB, TGB, TPM, VGB, ZNS	LTG		
ETX, FLB, LEV, PHT, TGB, TPM, VGB, ZNS	-		
	comorbidities Avoid - FLB, LEV, LTG, TGB Barbiturates, LEV, PGB, TGB, TPM, VGB, ZNS ETX, FLB, LEV, PHT, TGB, TPM,		

CYP1A2	CYP2C9	CYP2C19	CYP3A4	CYP2D6
Substrates	Substrates	Substrates	Substrates	Substrates
Amitriptyline	Olanzapine	Amitriptyline	Amitriptyline	Paroxetine
Imipramine	Thioridazine	Imipramine	Imipramine	Fluoxetine
Clomipramine		Clomipramine	Nortriptyline	Venlafaxine
Fluvoxamine		Citalopram	Desipramine	Mianserine
Trazodone		Moclobernide	Clomipramine	Nefazodone
Haloperidol			Sertraline	Amitriptyline
Clozapine			Nefazodone	Clomipramine
Olanzapine			Venlafaxine	Nortriptyline
Ziprazidone			Haloperidol	Imipramine
Chlorazepam			Risperidone	Desipramine
			Clozapine	Trazodone
			Ziprasidone	Clomipramine
			Quetiapine	Maprotiline
				Haloperidol
				Chlorpromazine
				Olanzapine
				Risperidone
				Quetiapine
AED inducers				
Phenytoin	Phenytoin	Phenytoin	Phenytoin	None known
Carbamazepine	Carbamazepine	Carbamazepine	Carbamazepine	
Phenobarbital	Phenobarbital	Phenobarbital	Phenobarbital	
Primidone	Primidone	Primidone	Primidone	
			Oxcarbazepine*	
			Topiramate*	
AED inhibitors				
None known	Valproic acid	Felbamate	None known	None known
		Topiramate		





Lactation

How to advise the patients

			anges wi	
Side effects	AEDs	Time frame	Incidence	Extent
Weight gain	VPA	2-3 months and may be continue	Up to 30-40%	1-3% of BW Up to 8% of BW (with high dose)
	GBP		23%	
	PGB		18%	
	RTG			
Weight loss	TPM	Stabilize after 12-18 months	6-17% in leaflet (upto 60% in review)	Up to 7.5% of BW Dose dependent
	ZNS		3%	
	FBM			
	STP			

AEDs and osteoporosis

- Enzyme inducing AEDs may interfere with metabolism of vitamin D, therefore can cause increased incidence of osteoporosis with long term use.
- Valproate may have effects on increased bone turnover

All patients: adequate intake of dietary vitamin D and Ca and regular exercise Institutionalized patients and postmenopausal women: supplement of vitamin D (800 IU) and Ca (1000 mg)

Patients with additional increased risk: supplement of vitamin D (1000-4000 IU) and Ca (1500 mg)

Dual-energy X-ray absorptiometry (DXA) scan 5 years after initiation of antiepileptic drugs (AED) treatment

DXA scan at initiation of AED treatment in postmenopausal women DXA scan every 2-3 years in high-risk patients (eg. users of valproate or enzyme

T-scores < -1: supplement of vitamin D (800 IU) and Ca (1000 mg) and weight-bearing exercise

T-scores between -1 and -2.5: supplement of vitamin D (800 IU) and Ca (1000 mg), weight-bearing exercise, new DXA scan repeated after 1-2 years T-scores < -2.5: referral for the treatment of bone disease, usually with the addition of bisphophanates

Svalheim S, et al. Acta Neurol Scand: 2011; 124 (Suppl. 191): 89-95.

Contraception in epilepsy patients

- ❖ AEDs that cause induction of CYP 3A4 increase metabolism of oral contraceptives resulting in failure of contraceptives.
- Potent enzyme inducing AEDs:
 - phenytoin, carbamazepine, primidone, phenobarbital.
- Less-potent enzyme inducing AEDs:
 - oxcarbazepine, lamotrigine
 - topiramate >200 mg.

Contraception in epilepsy patients

- * AEDs that are non-enzyme inducing have no effect on oral contraceptives.
- ❖ Non-enzyme inducing AEDs:
 - levetiracetam, gabapentin, tiagabine, valproic acid, zonisamide, pregabalin, vigabatrin, topiramate ≤200 mg.

Contraception in epilepsy patients

Oral contraceptives should contain >50 micrograms of estrogen in the combination and external methods to prevent insufficient protection.

Malformation Risks of AEDs in Pregnancy No AED 2-3% Monotherapy 3.7%-6% Polytherapy 6.1%-15%

AED Specific Malformation Rates in Pregnancy

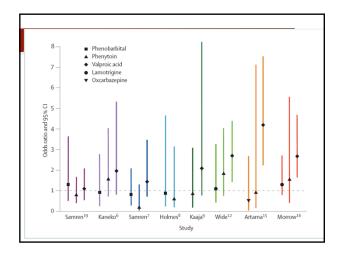
 ❖ Carbamazepine
 2.1% to 4%

 ❖ Gabapentin
 3.7%

 ❖ Lamotrigine
 2.9% to 3.5%

 ❖ Phenytoin
 4.1% to 6.8

 ❖ Valproic acid
 6.1% 10.7%


 ❖ Topiramate
 ?

UK Epilepsy and pregnancy Registry JNNP 2005 Swedish Medical Birth Registry Acta Paediatr 2004;93:174

?

❖ Levetiracetam

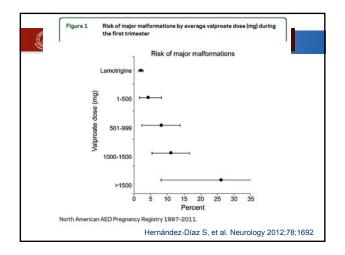
International lamotrigine Registry
North America Antiepileptic Drug Pregnancy Registry

SPECIAL REPORT

Management issues for women with epilepsy—Focus on pregnancy (an evidence-based review): II. Teratogenesis and perinatal outcomes

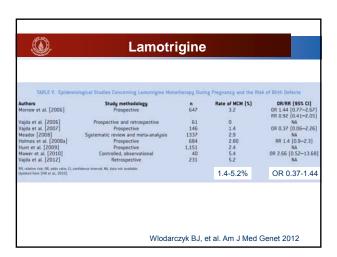
Report of the Quality Standards Subcommittee and Therapeutics and Technology Subcommittee of the American Academy of Neurology and the American Epilepsy Society

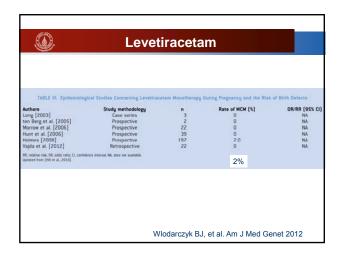
*Cynthia L. Harden, †Kimford J. Meador, †Page B. Pennell, ‡W. Allen Hauser, §Gary S. Gronseth, ¶acqueline A. French, **Samuel Wiebe, ††David Thurman, †‡Barbara S. Koppel, §§Peter W. Kaplan, ¶¶Julian N. Robinson, ***Jennifer Hopp, ***Tricia Y. Ting, †††Barry Gidal, ‡‡‡Collin A. Hovinga, §§§Andrew N. Wilner, ¶¶¶Blanca Vazquez, ¶¶Lewis Holmes, ***Allan Krumholz, ****Richard Finnell, ††††Deborah Hirtz, and ‡‡‡Claire Le Guen

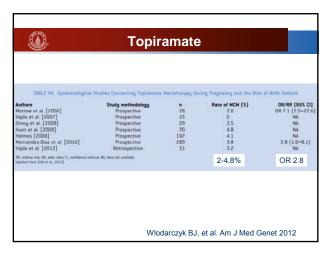

Risk of congenital malformation using AED in 1st trimester

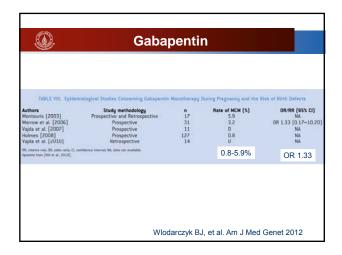
* AEDs taken during the first trimester probably increase the risk of MCMs in the offspring of WWE (two adequately sensitive Class II studies) but it cannot be determined if the increased risk is from all AEDs or from only one or some AEDs

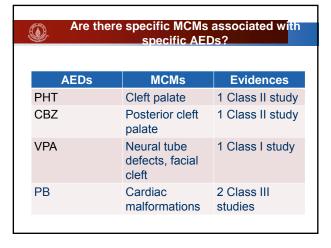
Risk of congenital malformation using AEI in 1st trimester			
AEDs	MCM risk	Evidences	
All AEDs	Prob. increased	2 class II (adeq.sensitive)	
VPA monoRx	Prob. increased	1 class II	
VPA polyRx	Prob. increased	1 class I	
CBZ	Prob. doesnot	1 class I	
LTG	Insuff. evidences	1 class I (inadeq.sensitive)	
Other specific AEDs	Insuff. evidences	No class III	

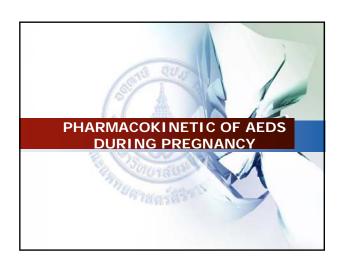

Risk of congenital malformation using AED in 1st trimester


- If possible, avoidance of the use of VPA as part of polytherapy during the first trimester of pregnancy should be considered to decrease the risk of MCMs (Level B)
- ❖ If possible, avoidance of the use of VPA monotherapy during the first trimester of pregnancy may be considered to decrease the risk of MCMs (Level C).




Polytherapy VS monotherapy


- Polytherapy probably contributes to the development of MCMs in the offspring of WWE as compared to monotherapy (one Class I study)
- ❖ To reduce the risk of MCMs, avoidance of the use of AED polytherapy during the first trimester of pregnancy, if possible, compared to monotherapy should be considered (Level B).



ļ	Changes in AEDs clearance or levels				
	AEDs	Level changes	Evidences		
	LTG	♦ >35%	1 class I, 2 class II		
	CBZ	Ψ Up to 12%	1 class I		
	PHT	◆ Free PHT up to 16%	1 class I		
	OXC	Ψ MHD conc. up to 36-61%	2 class III		
	LEV	Ψ Up to 60%	1 class II		
	PB, VPA, ETX	Insufficient data			

Changes in AED level or clearance

- Monitoring of lamotrigine, carbamazepine, and phenytoin levels during pregnancy should be considered (Level B)
- Monitoring of levetiracetam and oxcarbazepin levels during pregnancy may be considered (Level C)
- There is insufficient evidence to support or refute a change in phenobarbital, valproate, primidone, or ethosuximide levels related to pregnancy (Level U)

Breast milk penetration

Valproate, phenobarbital, phenytoin, and carbamazepine may be considered as not transferring into breast milk to as great an extent as primidone, levetiracetam, gabapentin,lamotrigine, and topiramate (Level B when compared to primidone and levetiracetam and Level C when compared to gabapentin, lamotrigine, and topiramate).

Epilepsy and pregnancy

ควรมีการให้ความรู้เกี่ยวกับโอกาสและความเสี่ยงที่ จะเกิดความผิดปกติของเด็กในครรภ์สำหรับหญิงวัย เจริญพันธุ์ที่ต้องรับประทานยากันชัก เพื่อผู้ป่วยจะ ได้สามารถวางแผนและตัดสินใจเรื่องการตั้งครรภ์ ล่วงหน้าได้

Epilepsy and pregnancy

- ❖ ควรวางแผนล่วงหน้าก่อนการตั้งครรภ์เนื่องจาก
 - ในกรณีที่มารดาไม่มีอาการซักนานเกิน 2 ปีอาจพิจารณา หยุดยากันซักได้
 - ในกรณีที่คุมอาการชักได้ดี และมารดารับประทานยากันซัก มากกว่า 1 ชนิดอาจพิจารณาลดขนาดยาหรือลดยาเหลือ 1 ชนิด เพื่อลดโอกาสการเกิดผลข้างเคียงต่อทารกในครรภ์

Epilepsy and pregnancy

- ควรวางแผนล่วงหน้าก่อนการตั้งครรภ์เนื่องจาก
 - ควรหลีกเลี่ยงการใช้ยากันขักที่มี teratogenic effect สูง เช่น sodium valproate ในช่วงการตั้งครรภ์หากสามารถทำได้

Epilepsy and pregnancy

- ในขณะที่ผู้ป่วยตั้งครรภ์ไม่ควรปรับหรือเปลี่ยนยา กันชัก เนื่องจากโอกาสที่จะเกิดอันตรายต่อมารดา และทารกในครรภ์หากผู้ป่วยเกิดการซักมีมากกว่า โอกาสการเกิดผลข้างเคียงต่อทารกในครรภ์
- ควรมีการตรวจคัดกรองความผิดปกติของเด็กใน ครรภ์มารดา โดยเฉพาะ malformation ที่พบได้บ่อย และรุนแรง เช่น neural tube defect

Epilepsy and pregnancy

- ❖ในผู้หญิงวัยเจริญพันธ์ควรได้รับ folic acid supplementation ในขนาด 4-5 mg/d ซึ่งจาก การศึกษาที่ผ่านมา อาจช่วยลดโอกาสการเกิด neural tube defects ได้บ้าง
- ❖ในผู้ป่วยที่ได้รับ enzyme inducing AEDs เด็ก แรกคลอดควรได้รับ vitamin K supplement หลังคลอดเช่นเดียวกับเด็กอื่นๆ

()

Which medications?

- ลักษณะการซักและประเภทของโรคลมซักของผู้ป่วย
- การบริหารยา
- ผลข้างเคียงของยากันชัก
- Drug interaction กรณีที่ผู้ป่วยได้ยาหลายชนิดพร้อมกัน
- Special situations
 - Reproductive age
 - Elderly
 - Hepatic impairment
 - Renal impairment