Antiepileptic Drugs: Basic Pharmacology for Daily Practices

นพ. อนันต์นิตย์ วิสุทธิพันธ์

Division of Neurology, Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital

Frequent Mistakes in Management of Epilepsy

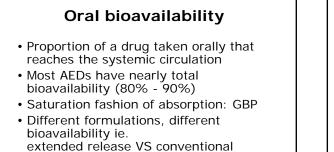
- Wrong diagnosis:
 Seizure VS Pseudoseizure
 Type of seizure
- Wrong selection of AED
- Premature change of AED
- Inappropriate method of AED administration
- Drug interaction
- Delayed referral for further investigation & management

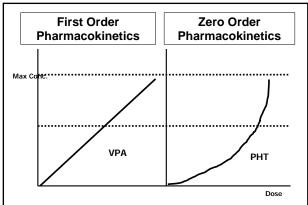
Principles in Therapy of Epilepsy

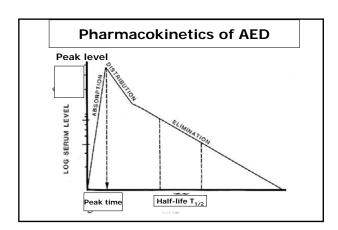
- Goal of AED treatment in epilepsy is to abolish seizure completely with minimal of drug-related adverse reaction
- Freedom of seizures should not pursued at any cost and risk of drug-induced adverse reactions
- Increased numbers & dosage may jeopardize social and mental well-being of patients

Panayiotopoulos CP: The Epilepsies 2005

Principles in Pharmacologic Therapy in Epilepsy

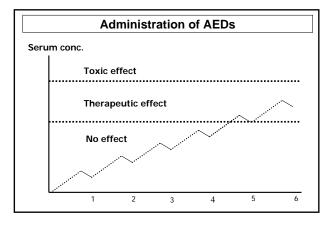

- Pharmacokinetics
 - Study of the time course of a drug and its metabolite in humans
 - Quantitative description of what happens to the drug in human body
- Pharmacodynamics


Principles in Pharmacologic Therapy in Epilepsy


- Pharmacokinetics
- Pharmacodynamics
 - Biochemical and physiological effects of drugs and their metabolisms of action
 - -Study of the effect of a drug on humans

Pharmacokinetics

- Oral bioavailability-absorption
- Distribution
- Elimination Half-life (T_{1/2})
- · Steady state
- Protein binding



- Absorption→ drug will be distributed within blood components & body tissues
- Rate & extent of penetration vary from one to the others
 - Chemical properties
 - Degree of drug binding to plasma & tissue
 - Blood flow
 - Biologic barrier: BBB lipophilic > hydrophilic
 - Volume of distribution

- The length of time for drug's plasma concentration to decline by half
- Useful for determination of time to steady state
- Apply for dosing interval

Loading Dose

Concentration of drugs =
<u>amount of drug</u>
volume of distribution of that drug

V= BW X volume of distribution(Vd) Vd varies from one drug to the other

Steady State

- Equilibrium after initiation of continuous AED treatment
- State that ingested amount of drug equals eliminated amount of that drug (rate of input = rate of output)

Major Metabolism & Elimination Hepatic Pathway

- Carbamazepine
- LamotrigineTopiramate
- Clonazepam

• Phenobarbital

Pheytoin

• Valproate

Clobazam

• Tiagabine

• Oxcarbazepine

- Zonisamide
- Ethosuximide

Major Metabolism & Elimination Renal Pathway

- GabapentinLevetiracetam
- Pregabalin Vigabatrin

AEDs	Enzyme Induced	Enzyme I nhibited	
PB	СҮР2С, СҮРЗА,	None	
	Microsomal epoxide hydrolases		
	UGTs		
DPH	СҮР2С, СҮРЗА,	None	
	Microsomal epoxide hydrolases		
	UGTs		
CBZ	CYP2C, CYP3A, CYP1A2	None	
	Microsomal epoxide hydrolases		
	UGTs		

AED & Hepatic Metabolism

AEDs	Enzyme I nduced	Enzyme Inhibited	
LTG	UGTs	None	
охс	CYP3A4, UGTs	CYP2C19	
TPM	Dose-dependent enzyme inducer CYP3A	CYP2C19	
	β-oxidation		

AED	Enzyme Induced	Enzyme Inhibited
VPA	None	CYP2C9
		Microsomal epoxide hydrolases
		UGTs

AEDs Interactions

- Drugs that induce metabolism of other drugs: carbamazepine, phenytoin, phenobarbital
- Drugs that inhibit metabolism of other drugs: valproate, felbamate
- Drugs that are highly protein bound: valproate, phenytoin
- Other drugs may alter metabolism or protein binding of antiepileptic drugs

Protein Binding

- Drugs: unbound (free) or bound
- Active AEDs are mostly free (unbound)
- Change in bound fraction, alteration of active fraction
 - –Physiologic (pregnancy)
 - -Pathologic (renal diseases, hepatic diseases)
 - Concomitant administration

Pharmacokinetics of Traditional AEDs

AED	Absorption	Binding	Elimination	Half life (hrs.)
CBZ	80%	75-85%	100% (hepatic)	8-28
РВ	100%	50%	75% (hepatic)	37-73
РНТ	95%	90%	100% (hepatic)	5-14
VPA	100%	80-95%	100% (hepatic)	8-15

& Their Likelihood of Pharmacokinetics				
Issues	РНТ	CBZ	РВ	VPA
Metabolism is inducible	+	+	+	+
Metabolism is inhitbitable	+	+	+	
Hepatic enzyme inducer	+++	+++	+++	
Hepatic enzyme inhibitor				+++

Inappropriate AED Administration

- Unpractical dosage
- Preparation of AED
 - Liquid
 - Capsule
 - -Sugar-coated tablet
 - -Enteric-coated tablet
- Prompt release/ slow release / long acting
- Route and method of administration
- Generic VS original drug