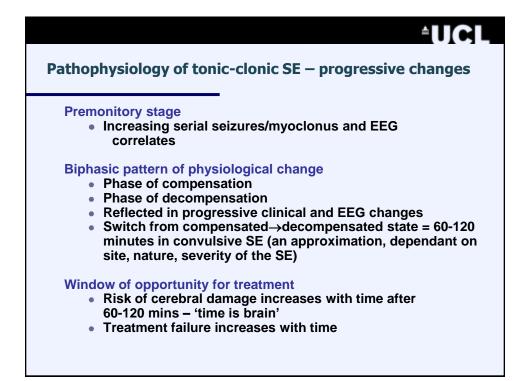
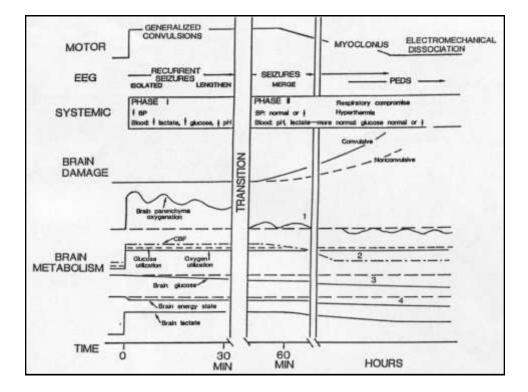


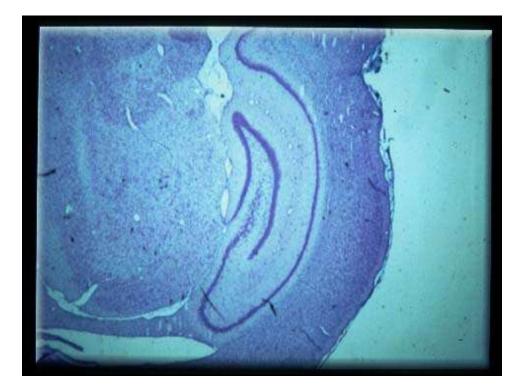
Pathophysiology, causes and treatment of tonic-clonic status epilepticus in adults

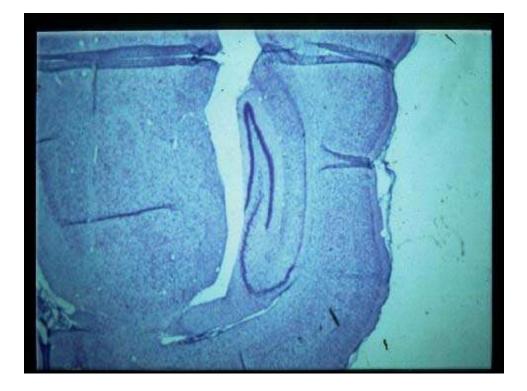
Epilepsy Society of Thailand July 22nd 2010

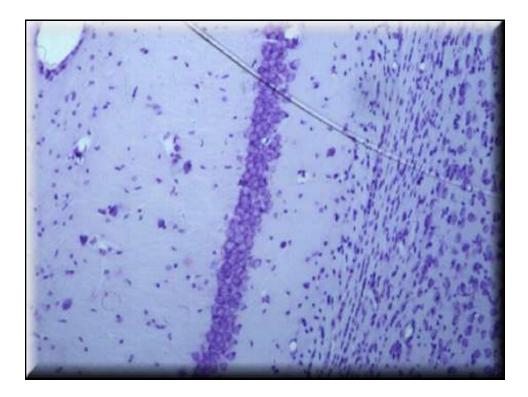
Simon Shorvon

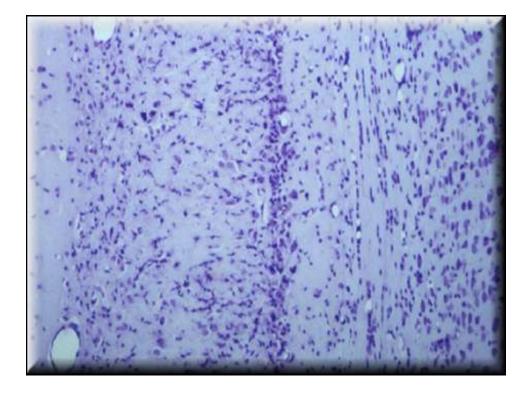

UCL Institute of Neurology, London UK

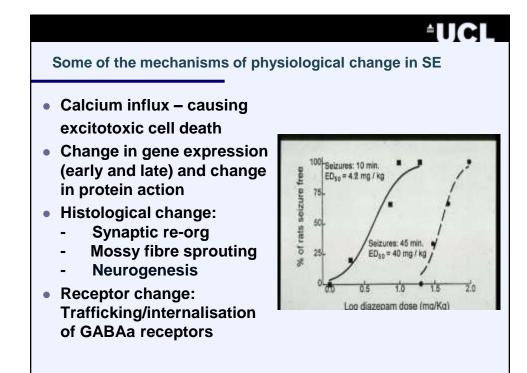



≜UCL


Tonic-clonic status epilepticus


- Incidence approximately 18-36 cases per 100,000 persons per year. 0.1% of all A&E visits. Rates higher in children, learning disability, structural cerebral pathology, frontal pathology
- 65% of cases occur de novo, without prior history of epilepsy, due to acute cerebral event (vascular, trauma, infection) or acute metabolic/drug-induced cause
- In pre-existing epilepsy, TCSE is often precipitated by drug reduction/withdrawal, intercurrent illness, metabolic disturbance, progressive disease.
- SE occurs in 5% of all adults and 10-25% of all children with epilepsy
- Mortality rate 10-20%





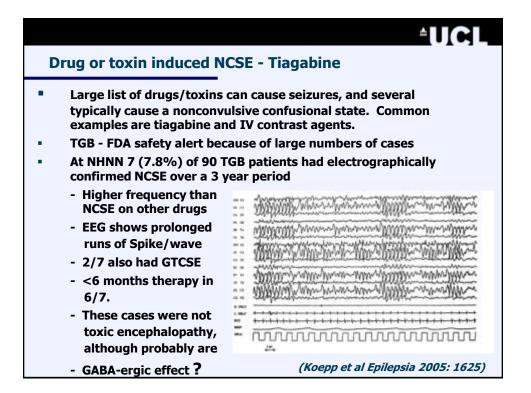
Causes of status epilepticus: common causes

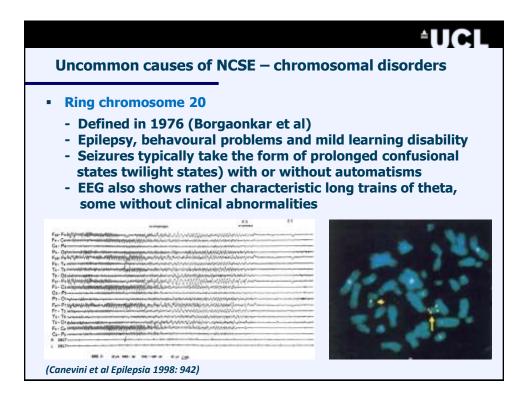
	Rochester USA	Switzerland	Bologna Italy
Year	1965-84	1997-1998	1999-2000
Population	1,090,055	1,735,420	336,876
No. of cases	199	172	44
SE Incidence	18.3/100,000/yr	10.3/100,000/yr	13.1/100,000/yr
Prior epilepsy	44%	33%	39%
Acute sympt	50%	63%	34%
Remote sympt	20%	28%	34%
Idiopathic	14%		7%
Other/NK	16%	9%	25%

≜UCL

Causes of status epilepticus: common causes

- Review of causes of SE in 1679 patients from 13 hospital series:
 - Infection 9%
 - Cerebral tumour 7%
 - Cerebrovascular disease 10%
 - Trauma
 - Drugs, toxins, metabolic 15%
 - Congenital/perinatal
 - Febrile SE 12%
 - Other 9%
 - Idiopathic/cryptogenic 19%

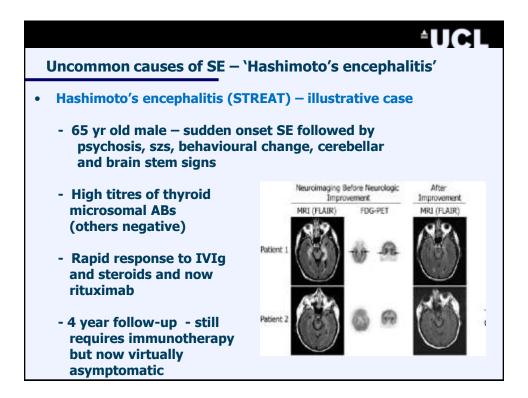

Status was a presenting symptom in 59%, and an intercurrent event in 41% (*Shorvon 1994*)


7%

10%

Uncommon causes in which SE is common or characteristic Drug/toxin/metabolic - Drug induced (Tiagabine, IV contrast agents, isonaizid) - Toxin (Domoic acid, organophosphates, metals) - Chromosomal disorders (ring chromosome 20, ring 14, Dup 15 etc) Genetic / Chromosomal - Ring chromosome 20 and other karyotype abnormalities - Inherited metabolic disorders - Cortical malformations (hemimegencephaly, others etc) - Syndromes (Dravets, West etc) Inflammatory/Infective - Autoimmune/inflammatory 'neocortical encephalitis' (Rasmussen) - Autoimmune/inflammatory `limbic encephalitis' - Infective (CJD, Tick-Borne Encephalitis, Cat scratch fever, etc) Mitochondrial disease - mtDNA defects – eg MELAS, MERFF, Leigh - Nuclear gene mutations affecting mtDNA (POLG1 gene Alpers' disease, occipital lobe epilepsy) (Ep res 2010 in press)

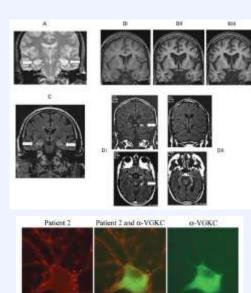
	⁺UCL
Other drug induced Status e	epilepticus
More than 10 reports =	rts; there is no systematic study
 Drugs mentioned in more th Antidepressants +++ Anticonvulsants (BZD, CBZ, LAM, LEV, VAL, VBG) Antibiotics Antipsychotics Cocaine Camphor +++ Cephalosporins +++ Cisplatin 	 Ecstasy Isoframide Isoniazid +++ Lithium Methotrexate N-acetylcysteine Tiagabine +++ Tetramine Theophylline +++
Cloroquine	(Ep res 2010 in press)


-UCI Uncommon causes of SE – autoimmune 'limbic encephalitis' Autoimmune LE - First case described by Brierley 1960 - First case associated with serum antibodies - thyroid microsomal AB (Hashimotos encephalitis) 1966 (Brain) - Since 1980s, a variety of ABs found, some with tumours and some 'idiopathic' - Cell surface antibodies - B-cell - and easier to treat - Intracellular antibodies - T-cell - less responsive to therapy **Intracellular antibodies Extracellular antibodies** Hu/ANNA-1 VGKA Ms-2 NMDA-R CRMP-5 Others (eg glycine, adenylate kinase 5, BR serine/threonine kinase) Amphiphysin

GAD

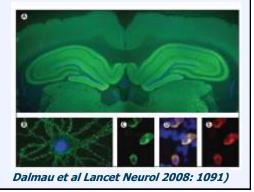
	⁺UCL
U	ncommon cause of SE - autoimmune limbic encephalitis
•	Clinical features Subacute encephalopathy with memory disturbance, behavioural/personality change/psychiatric disorder,
	and seizures (SE is common presenting symptom) - `Limbic' in flavour, but often widespread cerebral
	symptoms and signs (depending on ABs involved) - Epilepsy often characteristic in form; often presents with
	SE.
	- Prognosis of epilepsy depends on underlying cause
	Investigations MRI scanning often shows hippocampal high T2 signal CSF often abnormal sometimes with oligoclonal bands
•	Frequency of malignancy - Depends on ABs

≜UCL


Uncommon causes of SE – autoimmune limbic encephalitis Neoplastic autoimmune LE Neurological symptoms precede tumoural symptoms in 66%; LE associated with other signs Anti Hu: small cell lung cancer 10% have LE, others cerebellar, PN, autonomic Ma-2: intratubal germ cell tumours of testes Other features include hypothalamic and brainstem signs Amphyphysin: LE and 'stiff person syndrome GAD: LE with 'stiff person syndrome' Non-neoplastic autoimmune LE Voltage-gated potassium channel antibodies NMDA-R antibodies First case described by Brierley 1960 Hashimotos encephalitis (STREAT)

≜UCL

LE with Voltage Gated potassium Channel antibodies


- First described in 2001
- Cause of LE, with other regions
 also involved
- < 30% only with tumours
- Overlap with Morvan's syndrome
- Response to immunotherapy
- Series of 10 cases (Buckley 2004) (44-79 yrs; 9 males)
 - Malignancy in 0/10
 - OCBs in CSF in 1/10
 - Neuromyotonia in 1/10
 - Response in immunotherapy in 6/10
- Similar cases without Abs
- More common than recognised
- Queen Square treatment regimen – steroids, IVIg or Pl exchange, azoth, rituximab

⁺UCL

Uncommon causes of SE - LE due to NMDA-R antibodies

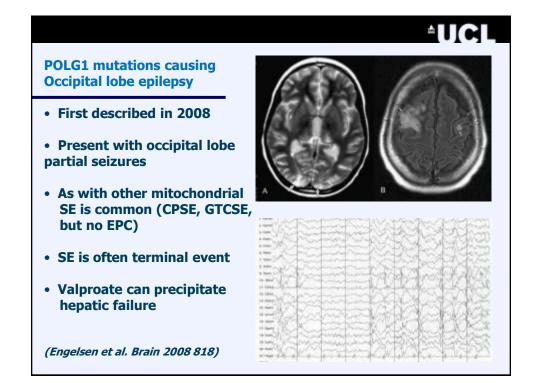
- First described in 2007 by Dalmau
- Severe but treatment responsive LE; 90% young women
- Present with rapid deterioration with psychosis, delusions, amnesia, szs, stupor/coma, stereotyped abnormal movements
- Paraneoplastic; although some cases without tumour (esp male)
- Case series of 100 cases (Dalmau 2008)
 - 59% tumours (commonest ovarian teratoma)
 - 75% recovered or mild deficit
 - 25% died
 - Main epitope is the extracellular N-terminal domain of NR1 subunit

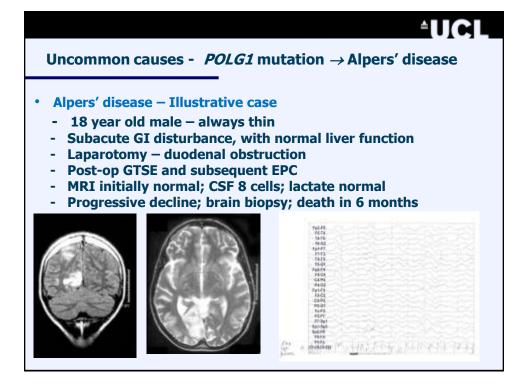
Uncommon causes of SE - Mitochondrial Disease

• Mitochondrial disease

- Defects in MtDNA \rightarrow MELAS/MERFF/MNGIE etc
- Mutation in nuclear genes that control mtDNA (eg POLG1)

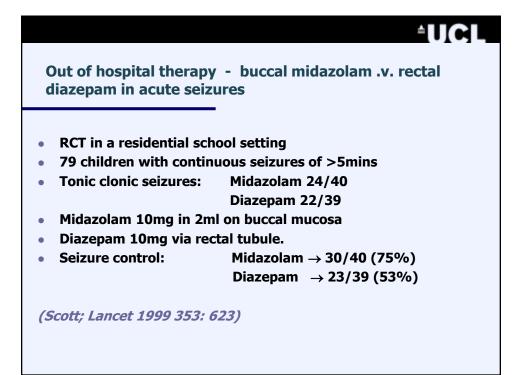
• POLG1 mutations

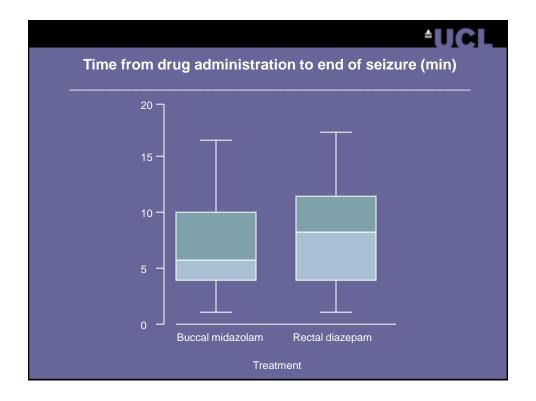

- Mutations cause a spectrum of disease - Alpers disease, PEO, mitochondrial SCA, occipital lobe epilepsy

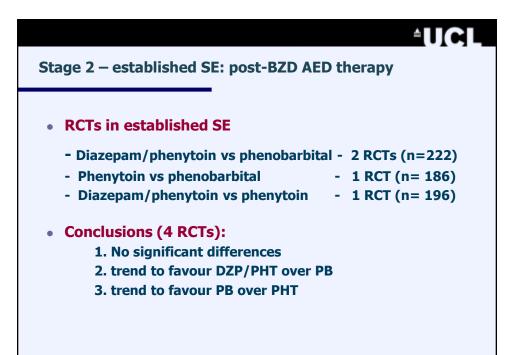

POLG1 mutations \rightarrow occipital lobe epilepsy (A467T and W748S)

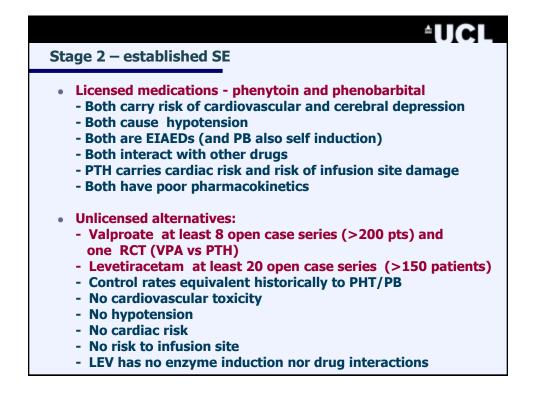
- Adult-onset (oldest 58yrs)
- Occipital lobe epilepsy
- All cases experience SE and usually intractable CPSE
- Death usually within 8 years

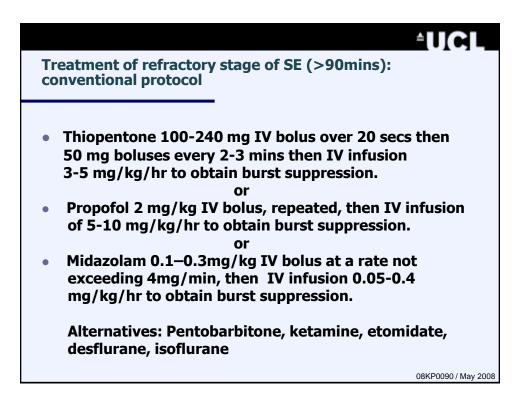
POLG1 mutation \rightarrow Alpers' disease


- Subacute presentation, death within 12 months
- Occipital predominance
- EPC, CPSE, GTCSE invariable

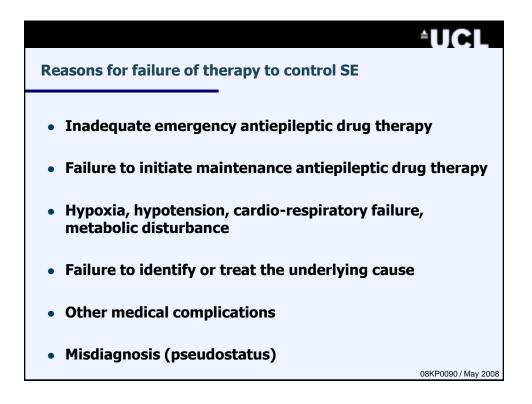



≜UCL
Treatment of tonic-clonic SE: the importance of staging
Stage 1: Premonitory / early SE
(Usual treatment = benzodiazepine)
\checkmark
Stage 2: Established SE
(Usual treatment = PTH or PB)
\checkmark
Stage 3: Refractory SE
(Usual treatment = general anaesthesia)
 Refractory TCSE is defined as 'The stage of SE reached when seizures have continued despite treatment for 60 minutes or more, and requiring general anaesthesia (Frequency – 2-5/100,000/yr)


Out-of-hospital therapy Buccal/intranasal administration of midazolam Midazolam water soluble → rapid absorption lipid soluble → rapid entry to brain



		⁺UCL
RCT of buccal midazolam .v rectal dia	zepam in child	dren
 Multicentre RCT - buccal midazolam .v. (approx). 219 episodes. 	rectal diazepar	n 0.5mg/kg
 Acute seizures and SE presenting to A seizures before trial; 31% had had prior 		
Outcome	MDZ (n= 109)	DZP (n=110)
- Seizure control (within 10 mins)	. 56%	27%
- Time to seizure control (median)	8 mins	15 mins
- Required lorazepam	33%	57%
- Respiratory depression	5%	6%
 Conclusion – buccal midazolam is mor diazepam 	e effective than	rectal
 50% control of seizures >30 mins 		
(McIntyre e	et al. Lancet 200	5: 366: 205-



SE – which is	the best gener	al
Midazolam	Barbiturate	Propofol
17-69%	20-55%	26-88%
+++	++++	0
++++	++	0
++++	++++	0
6hr	24-36hr	1-2hr
		`infusion syndrome'
	Midazolam 17-69% +++ ++++ ++++	17-69% 20-55% +++ ++++ +++ +++ ++++ ++++

Stage of refractory SE – which is the best general anaesthetic

	Midazolam	Pentobarbital	Propofo
N. of patients	54	106	33
Failed sz control	20 %	8 %	27 %
Breakthrough szs	51 %	15 %	12 %
Withdrawal szs	63 %	43 %	46 %
Hypotension	30 %	77 %	42 %
Mortality	46 %	48 %	52 %

08KP0090 / May 2008

3rd London Innsbruck Colloquium on Acute Seizures and Status Epilepticus Oxford UK : 7th - 9th April 2011

For further information:

www.statusepilepticus2011.eu

s.shorvon@ion.ucl.ac.uk

eugen.trinka@uki.at

