Matching antiepileptic medications with epilepsy patients

Kanokwan Boonyapisit, M.D. Siriraj Hospital

Which medications?

- ลักษณะการซักและประเภทของโรคลมซักของผู้ป่วย
- การบริหารยา
- ผลข้างเคียงของยากันซัก
- Drug interaction กรณีที่ผู้ป่วยได้ยาหลายชนิดพร้อมกัน
- Special situations
 - Reproductive age
 - Elderly
 - Hepatic impairment
 - Renal impairment

Traditional antiepileptic drugs

- Phenobarbital
- Phenytoin
- Carbamazepine
- · Sodium valproate
- Benzodiazepine

New antiepileptic drugs

- Felbamate (1993)
- · Gabapentin (1993)
- Lamotrigine (1994)
- Topiramate (1996)
- Tiagabine (1997)
- Levetiracetam (1999)
- Oxcarbazepine (2000)
- Zonisamide (2000)
- Pregabalin (2005)
- Vigabatrin

Seizure types and epilepsy syndrome

Spectrum of traditional AEDs

ชนิดของอาการชัก	Traditional AEDs
Absence	Sodium valproate
Myoclonic, atonic	Sodium valproate
Generalized tonic clonic	Phenobarbital
	Phenytoin
	Carbamazepine
	Sodium valproate

Spectrum of traditional AEDs

ชนิดของอาการชัก	Traditional AEDs
Partial	Phenobarbital
	Phenytoin
	Carbamazepine
	Sodium valproate
Infantile spasm	Vigabatrin
	I.

Spectrum of new AEDs										
Type of seizure	FBM	VGB	TGB	GBP	охс	LTG	TPM	LEV	PGB	ZNS
Partial	+	+	+	+	+	+	+	+	+	+
Second generalize	+	+	+	+	+	+	+	+	+	+
Tonic clonic	?+	?+	?	?+	+	+	+	+	?	+
Absence	?+	-	-	-	-	+	?	?+	?	?+
Myoclonic	?	-	?	-	-	+*	+	+	?	+
Lennox Gastaut	+	?	?	?	-	+	+	?	?	?
Infantile spasm	?	+	?+	?	-	?+	?+	?	?	?+
		Hitir	is N, Br	odie MJ	. Curr C	pin Ne	urol 20	06;19:1	75-80	

Z OXC + + + +	PHT +++	LTG +	VPA	GBP + +	VGB ++	BDZ
+	+++			1	1	
				+	+	
+	++					- 1
		+				
+	++	+		+	++	++
		+	+			
	+					
	+					
	+	+	+	+ +	+ +	+ +

ชนิดของอาการชัก	Traditional AEDs	New AEDs
Absence	Sodium valproate	Lamotrigine Clonazepam
Myoclonic, atonic	Sodium valproate	Lamotrigine Topiramate Clonazepam
Generalized tonic clonic	Phenobarbital Phenytoin Carbamazepine Sodium valproate	Lamotrigine Topiramate Oxcarbazepine Levitiracetam Gabapentin Clonazepam

ชนิดของอาการชัก	Traditional AEDs	New AEDs
Partial	Phenobarbital	Lamotrigine
	Phenytoin	Topiramate
	Carbamazepine	Oxcarbazepine
	Sodium valproate	Levitiracetam
		Gabapentin
		Clonazepam
		Clobazam
Infantile spasm	Vigabatrin	Sodium valproate
		Topiramate
		Clonazepam
		Clobazam

Drug administration

Pharmacologic properties of old AEDs

AEDs	Dosage in children	Dosage in adults	Half life (hrs)
Phenytoin	4-8 mg/kg/d	300 mg/d	20-30
Carbamazepine	10-20 mg/ kg/d	400-600 mg bid	10-20
Sodium valproate	30-60 mg/ kg/d	1000-1500 mg/d	8-12
Phenobarbital	2-5 mg/kg/d	120-250 mg/d	96
Clonazepam		0.5 mg bid	18-50

Pharmacologic properties of the new AEDs

Absorbtion

- Most of the new AEDs are rapidly absorbed with high bioavailability
- Gabapentin absorbtion is dose dependent

AED	Protein binding %	T/2	Site of elimination	Remarks
Gabapentin	0	4-6	Renal, 100% Not metabolize	Dose dependent absorption
Lamotrigine	55	15-30	Hepatic, 90% Glucoronidation	Clearance increased by enzyme inducing AEDs, reduced by VPA
Topiramate	9-17	15-23	Renal, 40-70%	Fraction hepatically metabolized, increased by enzyme inducing AEDs
Levetiracetam	0	6-8	Renal, 66%; hydrolysis of acetamide gr, 34%	Metabolism is nonhepatic hydrolysis
Oxcarbazepine	40	4-9	Hepatic, 70% Hepatic conversion to active metabolite	Based upon 10 Hydroxy carbazepine (MHD), the majo active metabolite
Zonisamide	40-60	24-60	Hepatic, 70%	Clearance increased by enzyme inducing AEDs
Pregabaline	0	6	Renal Not metabolize	

New AEDs starting dose and titration

Dosing table in adults						
Drugs	Starting dose (mg/d) Rate of ↑	Common dose (mg/d)	Maintenance range (mg/d)	Dosing interval		
Gabapentin	300-400 (300mg/d)	2400	1800- <u>3600</u>	tid		
Lamotrigine	12.5-25*	200-400	100- <u>400</u>	OD-bid		
Levetiracetam	500 (500mg/wk)	2000-3000	1000-4000	bid		
Oxcarbazepine	150- <u>300</u> (300 mg/wk)	900-1800	900- <u>2400</u>	Bid-tid		
Topiramate	25-50	200-400	100-1000	bid		
Zonisamide	100	400	400-600	OD-bid		
Pregabalin	150	300	150-600	Bid-tid		

Do	Dosing schedule for lamotrigine						
	MonoRx	Titrate	With Valproate	Titrate	With other AEDs	Titrate	
Adult							
Wk 1-2	25 mg OD		12.5 mg OD/AD	Slow	50 mg OD		
Wk 3-4	25 mg bid	25mg/ wk	25 mg OD	Slow	50 mg bid	50mg/ wk	
Mainte nance	50-100 mg bid		50-100 mg bid		100-200 mg bid		
Children							
Wk 1-2	0.5 mg/kg		0.15 mg/kg		0.6 mg/kg		
Wk 3-4	1 mg/kg	0.5 mg/ kg/ 2wk	0.3 mg/kg	0.1-0.3 mg/kg/ 2wk	1.2 mg/kg	1-2 mg/ kg/ 2wk	
Mainte	2-8 mg/kg		1-5 mg/kg		5-15 mg/kg		

Dosing schedule for topiramate

- Monotherapy
- 25 mg bid x 1 wk
- Increase 50 mg/d qwk until 100mg/d then increase 100 mg/d qwk
- · Adjunctive therapy
- 25 mg qd-bid 1 wk
- Increase 25-50 mg/d qwk

Side effects of AEDs

Side effects of old AEDs

AEDs	Common side effects	Serious side effects
Phenytoin	Nystagmus, ataxia, drowsiness, gum hypertrophy	Rash, Steven Johnson syndrome, elevated LFT
Carbamazepine	Nystagmus, ataxia, drowsiness	Rash, Steven Johnson syndrome, elevated LFT, leukopenia, hyponatremia
Sodium valproate	Drowsiness, tremor, alopecia, weight gain	Thrombocytopenia, elevated LFT, fulminant hepatic failure (rare)
Phenobarbital	Drowsiness, mental slowness, behavioral disorder	Rash, Steven Johnson syndrome, elevated LFT
Clonazepam	Drowsiness, mental slowness	

Side effects of new AEDs

Drugs	Potentially serious adverse events	Nonserious adverse events
Gabapentin	None	Weight gain, peripheral edema, behavioral changes
Lamotrigine	Rash, including Stevens Johnson and TENS, hypersensitivity reactions	Tics, insomnia
Levetiracetam	None	Irritability/ behavior changes
Oxcarbazepine	Hyponatremia (elderly), rash	None
Tiagabine	Stupor or spike wave stupor	Weakness
Topiramate	Renal calculi, open angle glaucoma, anhidrosis	Weight loss, language dysfunction,paresthesia
Zonisamide	Rash, renal calculi, anhidrosis	Irritability, weight loss
Pregabalin	None	Dizziness and somnolence, myoclonus

Risk for rash from AEDs

High Risk	Low Risk
Phenytoin	Valproate
Phenobarbital	Topiramate
Primidone	Gabapentin
Carbamazepine	Tiagabine
Oxcarbazepine	Levetiracetam
Lamotrigine	
Zonisamide	

AEDs hypersensitivity syndrome

Manifestation	Incidence (%)
Fever	100
Skin rash	87
Hepatitis	51
Eosinophilia	30
Blood dyscrasia	23
Nephritis	11
Lung involvement	9
Atypical lymphocytosis	6

AEDs hypersensitivity syndrome

• Incidence:

– Phenytoin– Carbamazepine1-4.1/10,000

Lamotrigine

- · Delayed type hypersensitivity
- Occurs 2-8 weeks after starting AEDs

?

- · Occurs with older aromatic AEDs
- Cross reactivity between PHT, PB and CBZ is quite high (up to 70-80% on testing)

Weight issues from AEDs

Weight Gain	Weight Neutral	Weight Loss
Valproate	Lamotrigine	Topiramate
Gabapentin	Levetiracetam (?)	Zonisamide
Carbamazepine	Phenytoin	Felbamate
Tiagabine (?)		
Vigabatrin		

Cognitive and behavioral side effects

	Cognitive	Behavioral
Conventional AEDs		
Carbamazepine	+	0
Phenobarbital	++	++
Phenytoin	+	0
Na Valproate	+	0
New AEDs		
Gabapentin	0	0
Lamotrigine	0	0
Levetiracetam	0	+
Oxcarbazepine	+?	0
Topiramate	+ (reduced by slow titration)	+?
Zonisamide	0	+?
Pregabalin	0	0

AEDs and osteoporosis

 Enzyme inducing AEDs may interfere with metabolism of vitamin D, therefore can cause increased incidence of osteoporosis with long term use. Common drug-drug interaction

Metabolic pathways of AEDs CYP 1A2 CYP 2C9 CYP 2C19 CYP 3A4 Carbamazepine* Phenytoin Phenytoin* Carbamazepine Phenobarbital Diazepam Tiagabine Valproate* Zonisamide Ethosuximide Felbamate *Minor metabolic pathway.

Between AEDs

- Enzyme inducing AEDs (PHT, PB, CBZ) VS other AEDs
 - Reduce all AEDs level esp. sodium valproate and lamotrigine

Effects of enzyme inducing drugs on the concentration and clearance of concurrent AEDs			
Effect on Concurrent AED Serum Concentration	Approximate Change in AED Clearance		
↓ Ethosuximide	↑ 20–50%		
↓ Valproate	↑ Two- to fourfold		
↓ Lamotrigine	↑ Two- to fourfold		
↓ Topiramate	↑ 40–50%		
↓ Tiagabine	↑ Two- to fourfold		
↓ Felbamate	↑50%		
↓ Zonisamide	↑ 30–50%		
↓ Oxcarbazepine	↑ 25 – 40%		
Levetiracetam	No change		

Between AEDs

- · Enzyme inhibitors
- Sodium valproate → ↑↑↑ lamotrigine
- Topiramate, oxcarbazepine → ↑ phenytoin

Main inhibitory interaction of AEDs

Newly Introduced Drug	Effect on Serum Concentration of Concurrent AEDs	Metabolic Pathway/ Enzymes Inhibited
Valproate	↑ Phenobarbital (15–40%)	N-glucosidation, p-hydroxylation
	↑ Lamotrigine (40–60%)	Glucuronidation
	↑ Carbamazepine epoxide*	Epoxide hydrolase
	↑ Felbamate (15–20%)	
Felbamate	↑ Phenytoin** (30–100%)	2C19
	↑ Carbamazepine epoxide* (40–50%)	
	↑ Valproate (30–50%)	Beta-oxidation
	↑ Phenobarbital (40–50%)	2C19
Topiramate	↑ Phenytoin** (25%)	2C19
Oxcarbazepine	↑ Phenytoin** (20–30%)	2C19

Lamotrigine

- Pregnancy, hormonal contraception can significantly lower lamotrigine level
- Therapeutic drug monitoring may be necessary during pregnancy
- **Valproate is a potent inhibitor of UGT dependent metabolism of lamotrigine and can significantly prolong lamotrigine half-life
- UGTs enzyme inducer AEDs (CBZ, PHT, PB) can increased metabolism of lamotrigine

Interaction with other drugs

- Interaction between CYP3A4 inhibitors and carbamazepine
- Warfarin
- OCPs
- · Psychiatric drugs
- · Cardiac drugs
- Chemotherapy and immunosuppressive agents

Commonly used medications that inhibit the CYP3A4 isoenzymes

Erythromycin Fluvoxamine Nefazodone Clarithromycin Troleandomycin Sertraline Cimetidine Ritonavir Diltiazem Indinavir Verapamil Nelfinavir Fluconazole Omeprazole Itraconazole Propoxyphene Ketoconazole

Drug interaction with warfarin

- Metabolites through CYP3A4, 2C9
- Phenytoin, phenobarbital and carbamazepine reduce the concentration of warfarin by up to 50-65%
- Phenobarbital and carbamazepine also reduce the anticoagulation effects of warfarin metabolites
- Newer AEDs do not have signinificant interaction with anticoagulant

Drug interaction with OCPs

- AEDs that cause induction of CYP 3A4 increase metabolism of oral contraceptives resulting in failure of contraceptives.
- · Potent enzyme inducing AEDs:
 - phenytoin, carbamazepine, primidone, phenobarbital.
- · Less-potent enzyme inducing AEDs:
 - oxcarbazepine, lamotrigine
 - topiramate >200 mg.

Drug interaction with OCPs

Oral contraceptives should contain >50
micrograms of estrogen in the combination
and external methods to prevent
insufficient protection.

Interaction with cardiac drugs

- Phenytoin → ↑ amiodarone level
 ↓ digoxin level
- · Enzyme inducers
 - → **\P** calcium channel blocker level
 - ◆ beta blocker level
- Verapamil and diltiazem inhibits carbamazepine metabolism

Interaction with immunosuppresive agents

- CBZ, oxcarbazepine, PB, and PHT may reduce cyclosporine, tacrolimus, and corticosteroid blood levels with a delayed effect of up to 10 days.
- Azathioprine, mycophenolate mofetil, and OKT3 metabolism are not significantly affected by AEDs.

Interaction with chemotherapy

- Enzyme inducing AEDs have been shown to have effects on levels of chemotherapy that metabolite through CYP 450
- Taxanes, vinca alkaloids, methotrexate, teniposide, and camptothecin analogues such as irinotecan

Vecht CJ, Wagner GL, Wilms EB. Lancet Neurol 2003;2:404-9.

Drug Class	Interactions with AEDs
Antiarrhythmics	Inductor AEDs enhances antiarrhythmics metabolism; phenytoin decreases amiodarone metabolism
Hypotensive agents	Inductor AEDs enhances beta-blockers and calcium-antagonist metabolism; verapamil and diltiaze inhibit carbamazepine metabolism.
Digoxin	Phenytoin increases digoxin metabolism.
Lipid-lowering drugs	Inductor AEDs enhance lipid-lowering agents metabolism.
Immunosuppressants	Phenytoin, carbamazepine, and barbiturates enhance tacrolimus, sirolimus, and methylprednisolon metabolism.
Antivirals	Inductor AEDs enhance anti-HIV agents metabolism; anti-HIV agents increase carbamazepine, gabapentin, levetiracetam, and lamotrigine levels.
Antibiotics	Carbapenems decrease valproate levels; macrolides increase carbamazepine levels.
Antifungal	Antifungals enhance carbamazepine and phenytoin levels.
Tuberculostatics	Rifampicin enhances phenytoin, carbamazepine, valproate, ethosuximide, and lamotrigine metabolism; isoniazide inhibits it.

Advantage of new AEDs

- Give clinician more choices of antiepileptic medications <u>especially more choices of broad</u> <u>spectrum AEDs</u>
- · Better tolerability?
- Better pharmacokinetic properties
- Low protein binding
- Most of the new AEDs are not strong hepatic enzyme inducers → fewer drug interaction
- · Fewer serious adverse events?

Disadvantage of new AEDs

- Cost effectiveness
- Availability

	Tab	Cost/day	Cost/month
Conventional AEDs			
Carbamazepine			
Tegretol tab (200)	6.28	30-60	900-1800
Tegretol CR (200)	6.66		
Tegretol CR (400)	14.76		
Phenobarbital			
Phenobarbital (30)	0.30	1-2	30-60
Phenobarbital (60)	0.41		
Phenytoin			
Phenytoin (50)	0.97	9	270
Dilantin cap (100)	2.87		
Na Valproate			
Depakine (200)	6.45	32-64	960-1920
Depakine chrono (500)	15.99		

	Tab	Cost/day	Cost/month
New AEDs			
Gabapentin			
Neurontin (100)	17.42	128-384	3840-11520
Neurontin (300)	32.00		
Neurontin (400)	38.00		
Lamotrigine			
Lamictal (25)	15.37	82-164	2460-4920
Lamictal (100)	41.00		
Topiramate			
Topamax (25)	17.42	94-189	2829-5658
Topamax (50)	27.67		
Topamax (100)	47.15		
Oxcarbazepine		60-120	1800-3600
Levetiracetam		90-270	2700-8100

How to adjust the medications?

How to adjust the medications?

- ก่อนจะพิจารณาเปลี่ยนหรือปรับยาในแต่ละขั้นตอนต้องคำนึง ถึงสิ่งต่อไปนี้เสมอ
 - -Is the diagnosis correct?
 - —ยากันชักที่เลือกใช้เหมาะสมกับชนิดของการชักของผู้ป่วย หรือไม่?
 - -Compliance
 - -Avoid precipitating factors
 - -Drug interaction

Prognosis in epilepsy patients

Natural history of treated epilepsy Remission Seizure free Not controlled (36%) (64%) 1. There seem to be two class of patient :easy versus difficult to control de novo 2. Patient with difficult to control epilepsy commonly have underlying cerebral pathology and higher number (>20) of seizure prior to treatment

Special situations

Special situations

- · Pregnancy and lactation
- Elderly
- · Hepatic dysfunction
- Renal dysfunction
- · Transplant patients
- · HIV infected patients
- · Endocrine disorder
- · Patients with brain tumor
- · Psychiatric patients

Pregnancy

Epilepsy and pregnancy

• ไม่มียากันซักตัวใดที่ปลอดภัยต่อเด็กในครรภ์มากกว่าตัว คื่นคย่างแท้จริง

Malformation Risks of AEDs in Pregnancy

No AED 2-3%Monotherapy 3.7%-6%Polytherapy 6.1%-15%

AED Specific Malformation Rates in Pregnancy

Carbamazepine
Gabapentin
Lamotrigine
Phenytoin
Valproic acid
2.1% to 4%
3.7%
2.9% to 3.5%
4.1% to 6.8
6.1% 10.7%

Topiramate ?Levetiracetam ?

UK Epilepsy and pregnancy Registry JNNP 2005 Swedish Medical Birth Registry Acta Paediatr 2004;93:174 International lamotrigine Registry North America Antiepileptic Drug Pregnancy Registry

Epilepsy and pregnancy

- ควรวางแผนล่วงหน้าก่อนการตั้งครรภ์เนื่องจาก
 - -ในกรณีที่มารดาไม่มีอาการซักนานเกิน 2 ปีอาจพิจารณา หยุดยากันซักได้
 - ในกรณีที่คุมอาการชักได้ดี และมารดารับประทานยากันชัก มากกว่า 1 ชนิดอาจพิจารณาลดขนาดยาหรือลดยาเหลือ 1 ชนิด เพื่อลดโอกาสการเกิดผลข้างเคียงต่อทารกในครรภ์

Epilepsy and pregnancy

- ในขณะที่ผู้ป่วยตั้งครรภ์ไม่ควรปรับหรือเปลี่ยนยากันชัก เนื่องจากโอกาสที่จะเกิดอันตรายต่อมารดาและทารกใน ครรภ์หากผู้ป่วยเกิดการซักมี<u>มากกว่า</u>โอกาสการเกิดผล ข้างเคียงต่อทารกในครรภ์
- ในผู้ป่วยที่ได้รับ enzyme inducing AEDs ควรได้รับ oral vitamin K supplement 10 mg/d 2-3 สัปดาห์ก่อน คลอด

Epilepsy and pregnancy

• ในผู้หญิงวัยเจริญพันธ์ควรได้รับ folic acid supplementation ในขนาด 4-5 mg/d ซึ่งจากการ ศึกษาที่ผ่านมา อาจช่วยลดโอกาสการเกิด neural tube defects ได้

Epilepsy and lactation

• ยากันซักส่วนมากไม่ได้ excrete ออกมาในน้ำนมมากนัก จึงมีผลน้อยต่อเด็ก นอกจาก phenobarbital ซึ่งอาจจะมี ผลทำให้เด็กง่วงซึมได้

Contraception in epilepsy patients

- AEDs that cause induction of CYP 3A4 increase metabolism of oral contraceptives resulting in failure of contraceptives.
- · Potent enzyme inducing AEDs:
 - phenytoin, carbamazepine, primidone, phenobarbital.
- Less-potent enzyme inducing AEDs:
 - oxcarbazepine, lamotrigine
 - topiramate >200 mg.

Contraception in epilepsy patients

- AEDs that are non-enzyme inducing have no effect on oral contraceptives.
- Non-enzyme inducing AEDs:
 - levetiracetam, gabapentin, tiagabine, valproic acid, zonisamide, pregabalin, vigabatrin, topiramate ≤200 mg.

Contraception in epilepsy patients

Oral contraceptives should contain >50
micrograms of estrogen in the combination
and external methods to prevent
insufficient protection.

Hepatic dysfunction

Effects	Older AEDs	New AEDs
Measurable increased in	PHT	-
free fraction with hypoalbuminemia	VPA	
Metabolism affected by	PB	GBP, LEV,
renal disease		TPM
Metabolism affected by	CBZ, PHT,	LTG, ZNS,
liver disease	VPA	OXC, TGB

Dosing adjustment for patients with impaired hepatic function

 There is insufficient information available to make recommendations on the necessity of dosage adjustment

Patients with impaired hepatic function

 Free fractions of diazepam, PHT, and VPA increase as a result of reduced circulating albumin concentrations. Frequent serum determinations of free fractions and gradual dose regulations are required.

Patients with impaired hepatic function

- Caution should be taken if VPA is used inpatients with liver disease.
- Hepatic dysfunction is less of a concern with PB, gabapentin, levetiracetam, topiramate, and zonisamide.

Renal dysfunction

Effects	Older AEDs	New AEDs
Measurable increased in	PHT	-
free fraction with hypoalbuminemia	VPA	
Metabolism affected by	PB	GBP, LEV,
renal disease		TPM
Metabolism affected by	CBZ, PHT,	LTG, ZNS,
liver disease	VPA	OXC, TGB

Dosing adjustment for patients with impaired renal function		
Creatinine clearance (mL/min)	Dosage (mg)	
Gabapentin		
>60	400 tid	
30-60	300 bid	
15-30	300 od	
<15	300 every other day	
hemodialysis	200-300* supplement	
Levetiracetam		
>80	500-1500 bid	
50-80	500-1000 bid	
30-50	250-750 bid	
<30	250-500 bid	
hemodialysis	500-1000*q 24 hr then 250-500 mg	
*with supplement dose aft	ers Hp plement	

Dosing adjustment for patients with impaired renal function

Creatinine clearance (mL/min)	Dosage (mg)
Topiramate	
>70	Normal dosage
10-70	Decrease dosage 50%
<10	Decrease dosage 75%
hemodialysis	Consider supplement

*with supplement dose after HD

