Epilepsy Highlight 2009

Rungsun Chaisevikul, M.D.

Charcrin Nabangchang, M.D.

Epilepsy Highlight2009

- Pharmacogenomics / Pharmacogenetics
- Pregnancy & epilepsy
- Novel RX:Carisbamate, Lacosamide, Retigabine,
 Rafinamide, Brivaracetam, Talampanel, Neuropace
- New drug in Thailand: Fosphenytoin, Levetiracetam syrup
- Upcoming drug to Thailand: I.V. Levetiracetam,
 Zonisamide
- □ New syndrome: new epileptic syndrome

Epilepsy Highlight2009

■ New therapy: DBS, Neuropace

Epilepsia, 49(12):2087–2091, 2008 doi: 10.1111/j.1528-1167.2008.01719.x

FULL-LENGTH ORIGINAL RESEARCH

Carbamazepine and phenytoin induced Stevens-Johnson syndrome is associated with HLA-B* I 502 allele in Thai population

*Chaichon Locharernkul, *Jakrin Loplumlert, *Chusak Limotai, *Wiwat Korkij, †Tayard Desudchit, †Siraprapa Tongkobpetch, ‡Oratai Kangwanshiratada, ‡Nattiya Hirankarn, †Kanya Suphapeetiporn, and †Vorasuk Shotelersuk

Departments of * Medicine, † Pediatrics, and ‡ Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand

Epilepsia, 50(1):1–23, 2009 doi:10.1111/j.1528-1167.2008.01716.x

CRITICAL REVIEW AND INVITED COMMENTARY

The clinical impact of pharmacogenetics on the treatment of epilepsy

*Wolfgang Löscher, †Ulrich Klotz, ‡Fritz Zimprich, and §Dieter Schmidt

*Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine, Hannover, Germany; †Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology and University of Tübingen, Stuttgart, Germany; ‡Department of Clinical Neurology, Medical University of Vienna, Austria; and §Epilepsy Research Group, Berlin, Germany

Epilepsy syndrome

Epilepsia, 50(1):24-32, 2009 doi: 10.1111/j.1528-1167.2008.01743.x

CRITICAL REVIEW AND INVITED COMMENTARY

Gene therapy in epilepsy

*Véronique Riban, †Helen L. Fitzsimons, and *Matthew J. During

*Neuroscience Program, Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Biological Research Tower, Columbus, Ohio, U.S.A.; and †Neurologix, Inc., Fort Lee, New Jersey, U.S.A.

Table I. Summary of studies for gene th	erapy of epilepsy
---	-------------------

Gene	Vector	Model	Authors		
Adenosine	Cells expressing adenosine	Kindling	Huber et al., 2001		
	Myoblasts delivering adenosine	Kindling	Guttinger et al., 2005		
CCK	Lipofectin	Audiogenic rats	Zhang et al., 1997		
ICPI 0PK	HSV-2	Kainate ip	Laing et al., 2006		
GAD	Cells expressing GAD65	Kindling	Gernert et al., 2002		
	Fetal cells	Kainate icv	Shetty & Turner, 2000		
	Immortalized astrocytes expressing GAD67	In vitro	Sacchettoni et al., 1998		
	Immortalized GABAergic cells	Kainate ip	Castillo et al., 2006		
	AAV-GAD67	In vitro	Robert et al., 1997		
	Fibroblasts, GAD65, GAD67	In vitro	Ruppert et al., 1993		
	Cells expressing GAD65	Kindling	Thompson et al., 2000		
	AAV-antisense GABA-A alpha I	Stim. of IC	Xiao et al., 1997		
Galanin	AAV-preprogalanin	Kainate ih	Lin et al., 2003		
	AAV-FIB-galanin	Kainate ip/stim. of IC	McCown, 2006		
	AAV-FIB-galanin/AAV-galanin	Stim. of IC	Haberman et al., 2003		
GDNF	Ad-GDNF	Kainate ip	Yoo et al., 2006		
	AAV-GDNF	Kindling, SSLSE	Kanter-Schlifke et al., 2007		
Glut I	HSVI	Kainate ih	McLaughlin et al., 2000		
HSP72	HSV	Kainate ip	Yenari et al., 1998		
Homer I	AAV	SSLSE	Klugmann et al., 2005		
NPY	AAV-preproNPY	Kainate ip, kindling	Richichi et al., 2004		
NPY	AAV-preproNPY	SSLSE	Noé et al., 2008		
NRI	AAV – NR I oral vaccine	Kainate ip	During et al., 2000		
	AAV-NRIA/AAV tet off	Stim. of IC	Haberman et al., 2002		

Ad, adenovirus; CCK, cholecystokinin; icv, intracerebroventricular; ih, intrahippocampal; ip, intraperitonneal; SSLSE, self-sus ing limbic status epilepticus; stim, stimulation.

Epilepsia, 50(7):1689–1696, 2009 doi:10.1111/j.1528-1167.2009.02059.x

FULL-LENGTH ORIGINAL RESEARCH

Multidrug-resistant genotype (ABCBI) and seizure recurrence in newly treated epilepsy: Data from international pharmacogenetic cohorts

*Cassandra Szoeke, †Graeme J. Sills, ‡Patrick Kwan, *Slave Petrovski, §Mark Newton, †Nikolas Hitiris, ¶Larry Baum, §Samuel F. Berkovic, †Martin J. Brodie, #Leslie J. Sheffield, and *Terence J. O'Brien

*The Departments of Neurology, Medicine and Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia; †Epilepsy Unit, University Division of Cardiovascular & Medical Sciences, Western Infirmary, Glasgow, Scotland; ‡Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China; §Departments of Medicine and Neurology, Austin Health, Melbourne, Australia; ¶School of Pharmacy, The Chinese University of Hong Kong, Shatin, Hong Kong, China; and #Department of Paediatrics, Murdoch Childrens Research Institute, The University of Melbourne, Parkville, Victoria, Australia

Epilepsia, 49(Suppl. 9):43–55, 2008 doi:10.1111/j.1528-1167.2008.01926.x

SUPPLEMENT – 2007 ANNUAL COURSE

Antiepileptic drugs during pregnancy: What is known and which AEDs seem to be safest?

Page B. Pennell

Department of Nuerology, Emory Epilepsy Program, Emory University School of Medicine, Atlanta, Georgia, U.S.A.

Epilepsia, 50(Suppl. 5): 58–61, 2009 doi: 10.1111/j.1528-1167.2009.02124.x

EPILEPSY SYNDROMES IN DEVELOPMENT

Transient epileptic amnesia: An emerging late-onset epileptic syndrome

*Leonilda Bilo, †Roberta Meo, *Patrizia Ruosi, *Maria Fulvia de Leva, and *Salvatore Striano

*Epilepsy Center, Department of Neurological Sciences, "Federico II" University, Naples, Italy; and †Neurology Outpatients Service, Azienda Sanitaria Locale Napoli I, Naples, Italy

Table I. Differential diagnosis between transient global amnesia (TGA) and transient epileptic amnesia (TEA)							
	TGA	TEA	Comments				
Duration of attacks	I-24 h	<1 h	Up to 30% of TEA episodes last longer than I h				
Interictal EEG	No epileptiform abnormalities	Epileptiform abnormalities on temporal or fronto-temporal regions	Up to 70% of cases of TEA have normal interictal EEG				
Other ictal symptoms (accompanying the amnesic attack, or occurring independently)	No	Yes	Up to 30% of cases of TEA have only pure amnesic attacks; additional minor ictal phenomena may be unnoticed				
Recurrence of attacks	Rare	Frequent	-				
Response to antiepileptic treatment	Absent	Common	-				
EEG, electroencephalography.							

Epilepsia 2009;suppl5:58-61

Epilepsia, 49(9):1504–1509, 2008 doi:10.1111/j.1528-1167.2008.01606.x

FULL-LENGTH ORIGINAL RESEARCH

A case-control evaluation of the ketogenic diet versus ACTH for new-onset infantile spasms

*†Eric H. Kossoff, *Erika F. Hedderick, †Zahava Turner, and *†John M. Freeman

Departments of *Neurology and †Pediatrics, Johns Hopkins Medical Institutions, Baltimore, Maryland, U.S.A.

Table 2. Demographics and outcomes of children started on the KD (n = 13). Patients are ordered based on the sequence in which they were treated over the II-year study period

	Age at spasm	Duration of			Etiology	Spasm- free	Time to spasm		Spasm-free with ACTH	Developmental
	onset	spasms			(specified if	at	freedom	EEG at	after therapy	outcome
Patient	(months)	(days)	Gender	- EEG ^a	symptomatic)	I month?	(days)	I month ^a	switched	at 6 months
T	5	24	Male	Modified	Cryptogenic	Yes	18	Modified	N/A	Mild delay
2	5	14	Female	Modified	Congenital CMV	Yes	7	None (normal at 4 months)	N/A	Moderate delay
3	2	21	Male	Classic	Hypoxic-ischemic encephalopathy	Yes	1	None (normal at 2 months)	N/A	Severe delay
4	5	5	Female	Classic	Idiopathic	Yes	6	Classic (normal at 3 months)	N/A	Normal
5	5	30	Male	Modified	Cryptogenic	No	N/A	Modified	Yes	Severe delay
6	5	3	Female		Congenital hydrocephalus	No	N/A	Modified	Yes	Moderate delay
7	10	4	Female	Classic	Group B streptococcal meningitis	Yes	9	Modified (normal at 5 months)	N/A	Mild delay
8	5	10	Male	Classic	Idiopathic	No	N/A	Classic	Yes	Normal
9	10	3	Male	Modified	Left hemispheric astrocytoma and infarction	No	N/A	Modified	Yes (topiramate used, not ACTH)	Mild delay
10	5	4	Female	Classic	Partial agenesis of the corpus callosum	Yes	3	Modified (normal at 2 months)	N/A	Mild delay
П	8	45	Male	Modified	Periventricular Ieukomalacia	Yes	10	Normal	N/A	Mild delay
12	5	7	Female	Classic	Idiopathic	Yes	3	Minor asymmetry (normal at 2 months)	N/A	Normal
13	3	14	Female	Modified	Aicardi syndrome	No	N/A	Modified [']	No	Moderate delay

^aclassic, classic hypsarrhythmia; modified, modified hypsarrhythmia.

Table 3. Demographics and outcomes of children started on ACTH (n = 20). Patient numbers are ordered based on the sequence in which they presented over the II-year study period

		Duration				Spasm-	Time to		Developmental
	Age at	of			Etiology	free	spasm		outcome at
Patient	onset	spasms			(specified if	at	freedom	EEG at	most recent
#	(months)	(days)	Gender	EEG ^a	symptomatic)	I month?	(days)	I month ^a	follow-up
T	4	16	Male	Classic	Dysgenesis of the corpus callosum	Yes	I	Modified	Normal
2	7	22	Female	Modified	Idiopathic	Yes	3	Normal	Normal
3	5	3	Male	Classic	Trisomy 21	Yes	1	None (normal at 6 months)	Moderate delay
4	5	25	Female	Classic	Trisomy 21	Yes	3	Normal	Mild delay
5	9	14	Male	Modified	Idiopathic	Yes	4	Normal	Mild delay
6	6	42	Male	Classic	Hemispheric atrophy	Yes	5	Normal	Normal
7	6	12	Male	Classic	Pachygyria	Yes	14	None	Moderate delay
8	5	30	Female	Modified	Periventricular Ieukomalacia	Yes	21	None (modified at 3 months)	Mild delay
9	6	25	Male	Classic	Cryptogenic	Yes	5	Focal spikes	Mild delay
10	7	90	Female	Classic	Trisomy 21	Yes	1	Normal	Moderate delay
П	I	50	Male	Modified	Periventricular Ieukomalacia	Yes	5	Focal spikes	Severe delay
12	6	4	Female	Classic	Periventricular leukomalacia, hydrocephalus	Yes	6	Focal spikes	Severe delay
13	5	21	Male	Classic	Cryptogenic	Yes	2	Normal	Normal
14	8	35	Female	Modified	Idiopathic	Yes	6	Normal	Normal
15	8	18	Male	Modified	Schizencephaly	Yes	2	Modified	Mild delay
16	5	25	Female	Classic	Chromosome 5,9 translocation	Yes	1	Modified	Mild delay
17	12	90	Male	Classic	Trisomy 21	Yes	5	Normal	Mild delay
18	6	21	Male	Classic	Linear nevus sebaceous syndrome	Yes	4	Normal	Normal
19	1	100	Male	Classic	Cryptogenic	No	N/A	Modified	Moderate delay
20	6	21	Male	Modified	Hearing loss, optic nerve atrophy	No	N/A	Modified	Moderate delay

Epilepsia 2008:49;1504

FULL-LENGTH ORIGINAL RESEARCH

Talampanel suppresses the acute and chronic effects of seizures in a rodent neonatal seizure model

*Paven K. Aujla, †Michael R. Fetell, and *‡Frances E. Jensen

*Department of Neurology, Children's Hospital Boston, Boston, Massachusetts, U.S.A.; †Teva Neuroscience, Miami, Florida, U.S.A.; and †Program in Neurobiology, Harvard Medical School, Boston, Massachusetts, U.S.A.

Picture from Epilepsia 2009;50:694

Pump 1 - Na+-K+-2Cl-(NKCCI)

Pump 2 -K+-Cl- (KCC2)

Hypoxia-Induced Long-Term Susceptibility to Neuronal Injury 60 40 20 P<0.01 Hypoxia Hypoxia/TPM Control

Koh S, Jensen FE. Ann Neurol 50:366, 2001

ThankYou