When to start and How to select AEDs

Sorawit Viravan, MD.

Division of Neurology, Department of Pediatrics
Faculty of Medicine Siriraj hospital

When to start AED

- True epileptic seizure
- First unprovoked seizure ??
- Diagnosis of epilepsy
 - →AED should be offered as soon as epilepsy has been established

Epilepsy: definition

- 1. At least 2 unprovoked seizures occurring at least 24 hours apart
- 2. One unprovoked seizure with probability of further sz (>60%) over the next 10 yr eg. Remote structural lesion
- 3. Epileptic syndrome

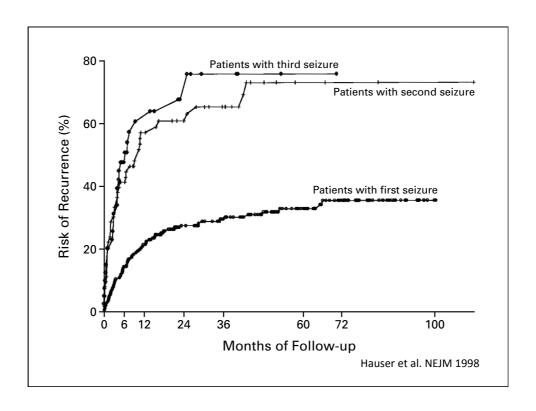
Fisher et al. A practical clinical definition of epilepsy, Epilepsia 2014

First unprovoked seizure

- Risk of second unprovoked sz = 33%
- Risk of third sz = 73%
- Risk of fourth sz = 76%

Hauser et al. NEJM 1998

 Overall risk of recurrent seizure = 40-50% within 2 years


Berg AT. Epilepsia 2008

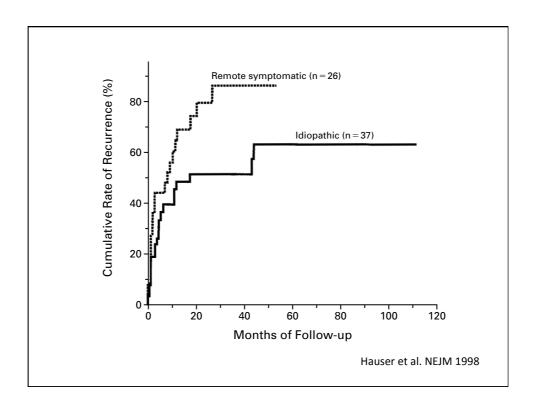

The New England Journal of Medicine

Table 2. Recurrence of Seizures at Various Times after the Index Seizure and According to the Seizure-free Interval.*

Variable	FIRST SEIZURE	SECOND SEIZURE	THIRD SEIZURE
No. of patients	204	63	41
	percent with	recurrence (95% confidence	e interval)
Within 12 mo Within 24 mo Within 36 mo Within 48 mo Within 60 mo	21 (16-27) 27 (21-34) 29 (23-36) 32 (25-38) 33 (26-40)	57 (45-70) 61 (48-73) 65 (53-78) 73 (59-87) 73 (59-87)	61 (44-77) 67 (51-84) 76 (60-91) 76 (60-91) 76 (60-91)

Hauser et al. NEJM 1998

First unprovoked seizure

Two large randomized trial

- FIR.S.T (First Seizure Trial Group, Italy 1993) 193 untreated pts. vs. 204 treated pts.
- MESS (Multicenter Epilepsy and Single Seizure study, European-wide 2005) including first ever seizure and newly diagnosed epilepsy 408 untreated pts. vs. 404 treated pts.

Berg AT. Epilepsia 2008

FIR.S.T: risk of recurrent sz

	Deferred gr.	Treatment gr.
3 months	18%	7%
6 months	28%	8%
12 months	41%	17%
24 months	51%	25%

60% reduction in the rate of relapse for immediate versus delayed treatment

MESS study: risk of recurrent sz

	Deferred gr.	Treatment gr.
6 months	26%	18%
2 years	39%	32%
5 years	51%	42%
8 years	52%	46%

Overall hazards ratio = 1.4 for untreated vs. treated

Reduction in recurrence rate = 30%

Predictors of recurrent sz

- Abnormal EEG
- Neurological deficit
- Age of onset
- Type of seizure
- Status epilepticus
- Hx of febrile seizure

Abnormal EEG and neurological sign

MESS study: lower risk if normal EEG and normal neurological status in untreated arm

- 25% recurrence risk at 2 years (overall 39%)
- Hazards ratio for abnormal EEG = 1.54 symptomatic case = 1.35

Kim et al. Lancet neurol 2006

Age

Children vs. adult

- FIR.S.T: slightly higher risk of recurrence in children (<16 yr)
- MESS: no significant change

Berg AT. Epilepsia 2008

Type of seizure

- Focal sz may be associated with higher risk of recurrence
- But focal sz often associated with abnormal EEG and symptomatic cause
- Independent effect of focal sz is weak and variable

Berg AT. Epilepsia 2008

Status epilepticus

 Adult: multiple seizures within a day or status epilepticus was associated with elevated risk of recurrence within the subgroup of patients with remote symptomatic first seizures

Hauser et al. neurology 1990

 Higher risk if status epilepticus and in teenager with multiple seizures within a day

Loiseau et al. epilepsia 1999

History of febrile seizure

 Increased risk of recurrence sz may be associated with previous febrile seizures in the group with remote symptomatic first unprovoked seizures

> Hauser et al. Neurology 1990 Shinnar et al. Pediatrics 1996

First unprovoked seizure

 Overall risk of recurrent seizure = 40-50% within 2 years

Increased risk if

- Abnormal EEG
- Identifiable neurological condition (neuro deficit)
- Remote symptomatic etiology (+ve brain lesion)
- Status epilepticus and a history of febrile seizures in individuals with symptomatic sz

Berg AT. Epilepsia 2008

First unprovoked seizure in children Common question from parents

- 1. Will it happen again?
- 2. How long do I have to wait for a recurrence?
- 3. Could my child die during a recurrence?
- 4. Could there be brain damage with a recurrence?
- 5. If I choose to delay medication treatment will there be any long-term change in the chance of a permanent remission?

Camfield and Camfield. Epilepsia 2008

Will it happen again?

Risk is increased by

- Focal versus generalized sz
- Presence of spike discharge on EEG
- Presence of concomitant neurological deficits
- → Children with none of these factors have approximately a 20% chance of recurrence
- → Children with all of these factors have about an 80% risk of recurrence

Camfield et al. Neurology 1985

Waiting for recurrence, how long?

- Children
- 88-90% recurrence by 2 years

Camfield et al. Neurology 1985 Shinnar et al. Ann neurol 2000

• Risk is rarely increasing after 5 years

Hauser et al. NEJM 1998

Could my child die during recurrence?

 Risk of a child dying during a recurrent seizure is very low

Except

- Status epilepticus
- SUDEP

The most frequent cause of death is <u>not</u> related to seizures

Camfield and Camfield. Epilepsia 2008

Any brain damage with a recurrence?

- The National Collaborative Perinatal Project (NCPP)
- 55,000 children from birth to 7 years of age
- Intelligence and academic testing at 7 years of age showed no difference between the siblings with seizures and those without
- 62 children had one or more afebrile seizures between age 4 and 7 years. Comparisons of the cognitive testing before and after seizure showed no change
- Clinically significant brain injury does not result from a few recurrent unprovoked seizures

Camfield and Camfield. Epilepsia 2008

Any risk of delayed treatment?

FIR.S.T and MESS study:

 early AED treatment reduced early recurrences but over several years the remission rates were identical

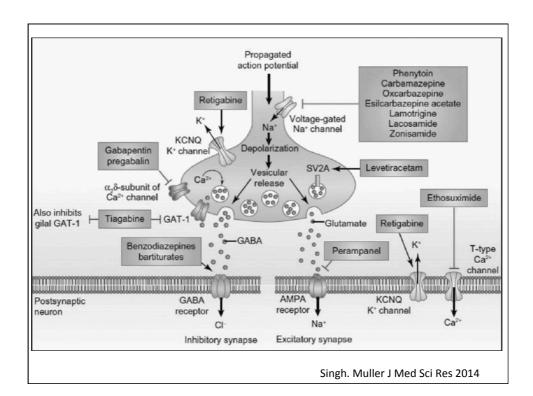
Camfield et al. epilepsia 2002 (14 AED VS. 14 without)

- Fewer recurrences in 1-year F/U for AED group
- No difference in the long-term remission rate (20-year) between the two groups

The chance of remission is not altered by delaying AED treatment after a first seizure

Camfield and Camfield. Epilepsia 2008

AED? In first unprovoked seizure


- Risk of recurrence
- Effect of recurrent seizure
- Data from EEG + MRI
- Risk of AED, adverse drug reaction
- Give all information to patient / parents to decide

How to choose AEDs for epilepsy?

Ideal AED

- Fully control seizures
- Well tolerated
- No long-term adverse event (teratogenicity, organ toxicity)
- Once- or twice-daily dosage
- No drug interactions
- No need for serum monitoring

Schmidt et al. Drug treatment of epilepsy in adults. BMJ 2014

Old AED

- Phenobarbital (PB)
- Phenytoin (PHT)
- Carbamazepine (CBZ)
- Valproate (VPA)

Newer AED

- Topiramate (TPM)
- Levetiracetam (LEV)
- Clobazam (CLB)
- Clonazepam (CZP)
- Oxcarbazepine (OXC)
- Lamotrigine (LTG)
- Vigabatrin (VGB)
- Gabapentin (GBP)
- Pregabalin (PGB)
- Zonisamide (ZNS)
- Lacosamide (LCM)
- Perampanel (PER)

AED in newly diagnosed epilepsy

 50% of patients with new-onset focal or generalized seizures become seizure-free while taking the first appropriately selected first-line AED

Brodie et al. Neurology 2012

AEDs and Seizure types

	Focal sz	GTC sz	Absence sz	Myoclonic sz	Atonic sz	CYP450	PK & PD	Protein bound
РВ	٧	٧				Inducer		
РНТ	٧	٧				Inducer	Zero order kinetic	High
CBZ	٧	٧				Inducer	Autoinducer first few wks	
VPA	٧	٧	٧	٧	٧	Inhibitor	First order kinetic	High

ILAE evidence review of AED as initial monotherapy for epileptic sz and syndrome

of evidence, and conclusions			Table	e 2. Rating scale of evidence for potentially releva	
Combination(s) of clinical trial ratings			studies		
	evidence	Conclusions	Class	Criteria	
≥ I Class I studies or meta-analysis meeting class I criteria sources OR > 2 Class II studies	A	AED established as efficacious or effective as initial monotherapy	I	A prospective, randomized, controlled clinical trial (RCT) or meta-analysis of RCTs, in a representative population that meets all six criteria: Primary outcome variable: efficacy or effectiveness Treatment duration: > 48 weeks	
I Class II study or meta-analysis meeting class II criteria	В	AED probably efficacious or effective as initial monotherapy		Study design: double blind	
≥ 2 Class III double-blind or open-label studies	С	AED possibly efficacious or effective as initial monotherapy			
I Class III double-blind or open-label study OR ≥ I Class IV clinical studies OR Data from expert committee reports, opinions from	D	AED potentially efficacious or effective as initial monotherapy			
experienced clinicians	-			Glauser et al. Epilepsia 2013	

Sz type, epileptic syndrome	Level A	Level B	Level C	Level D
Adult with focal sz	CBZ, LEV PHT, ZNS	VPA	OXC, TPM, LTG, GBP, PB, VGB	CZP
Children with focal	ОХС	-	CBZ, PB, PHT, VPA, TPM, VGB	CLB, CZP, LTG, ZNS
Adult with GTC sz	-	-	CBZ, OXC, LTG, PB, PHT, TPM, VPA	LEV, GBP, VGB
Children with GTC sz	-	-	CBZ, PB, PHT, VPA, TPM	OXC
Absence epilepsy	VPA, (ESM)	-	LTG	-
Benign Rolandic epilepsy	-	-	CBZ, VPA	LEV, OXC, GBP
Juvenile myoclonic epilepsy	-	-	-	VPA, TPM

New-Onset Partial Epilepsies	Refractory Partial Epilepsies
Carbamazepine	Lacosamide
Gabapentin	Pregabalin
_amotrigine	Zonisamide
Levetiracetam	Perampanel
Oxcarbazepine	Clobazam
Topiramate	
Valproate	
New-Onset Idiopathic	Refractory Idiopathic
Generalized Epilepsies	Generalized Epilepsies
Lamotrigine	Clobazam
Topiramate	Levetiracetam
Valproate	

Schmidt D. Neurologic clinics 2016

Benign epilepsy with centrotemporal spikes (BECTS)

1st line: Carbamazepine (CBZ), Lamotrigine (LTG)

- If not tolerated or unsuitable
- 2nd line: Valproic acid (VPA), Levetiracetam (LEV), Oxcarbazepine (OXC)
- CBZ and OXC may exacerbate continuous spike and wave during slow sleep, which may occur in some children with BECTS

NICE pathways 2016

Absence epilepsy syndrome

1st line: VPA (be aware of teratogenic risks)

- Offer LTG (if VPA is ineffective or unsuitable)
- Adjunctive: combination VPA + LTG
- Next: clobazam (CLB), clonazepam (CZP), LEV, topiramate (TPM) or zonisamide (ZNS)

Dravet syndrome

1st line: VPA or TPM

• Adjunctive: CLB, Stiripentol

• Do Not offer: Na ch. blocker

Idiopathic generalized epilepsy (IGE)

1st line: VPA

- Offer LTG (if VPA is ineffective or unsuitable)
 Be aware of LTG can exacerbate myoclonic sz
- Consider TPM (S/E)
- Adjunctive: LEV, CLB, CZP, ZNS

Juvenile myoclonic epilepsy (JME)

1st line: VPA

Offer LTG, LEV, TPM (if VPA is ineffective or unsuitable)

• Adjunctive: CLB, CZP, ZNS

Infantile spasm

1st line: Vigabatrin (VGB) in tuberous sclerosis Prednisolone or VGB in non-TSC

Lennox-Gastaut syndrome (LGS)

1st line: VPA

• Adjunctive: LTG

• Next: TPM, Rufinamide

Advantage Newer V.S. Older AEDs

- Not affecting hepatic enzyme function (GBP, PGB, LTG, LEV, LCM)
- Rapid onset of action (GBP, OXC, LEV, LCM)
- Intravenous loading (LEV, LCM)
- Broad spectrum efficacy (LTG, TPM, ZNS, LEV)

Unterberger I. Epileptologie 2015

Adverse reaction & tolerability

 Approximately 50% of patients reported at least one side effect from CBZ or VPA as well as from newer AEDs (LTG, GBP, OXC, TPM)

from SANAD study. Lancet 2007

- Newer AEDs: better tolerated
- Newer AEDs such as GBP or LEV cause fewer or no dermatologic hypersensitivity reactions and do not cause the drug interactions seen with older AEDs

Common dose-related AE

AED	somnolence	dizziness	tremor	ataxia	diplopia	n/v	anorexia	Wt. gain
РВ	+	+	+	+	+			
PHT		+	+	+	+	+		
CBZ	+	+	+	+	+	+		
VPA			+	+		+		+
TPM	+	+		+		+	+	
LEV	+					+	+	
LTG	+	+	+	+	+	+		
охс	+	+		+	+	+		
VGB	+					+		+

Risk of rash from AEDs

High risk	Moderate risk	Low risk
PHT (10%)	РВ	VPA
CBZ (8.7%)	OXC	TPM
LTG (6.2%)		LEV
		GBP
		VGB

CBZ and OXC: cross reactivity 30%

Arif et al. Neurology 2007

Aromatic ring AED: cross reactivity 40-80%

Hyson, Sadler. 1997

Krauss. Epilepsy Curr 2006

HLA B*1502 testing before starting CBZ

VPA: Liver toxicity/failure

- Potentially fatal
- First 3 months of treatment, very rare after 6 m
- Higher risk in
- Age < 2 years, polytherapy with enzyme inducing AEDs, inborn errors of metabolism, previous liver disease, mental retardation
- Risk ~ 1:600 (< 3 yr with polytherapy)
 ~ 1:16,000 (3-10 yr with monotherapy)

Bryant et al. Neurology 1996

Drug interaction

No drug interaction

- Levetiracetam
- Gabapentin
- Pregabalin
- Clobazam
- Vigabatrin
- Retigabine

Schmidt D. Neurologic clinics 2016

AED-induced seizure aggravation

Chaves J and Sander J. Epilepsia 2005

AED dosing administration

Slow titration

- Carbamazepine (2-5 wk) Phenytoin
- Lamotrigine (8-12 wk)
- Topiramate
- Zonisamide

Rapid titration

- Valproate
- Levetiracetam
- Oxcarbazepine (1-2 wk)
- Gabapentin

Ferrendelli J., Epilepsia 2001

How to choose AEDs for epilepsy?

- Seizure type / Epileptic syndrome
- Pharmacokinetic profiles
- Mechanism
- Drug interaction
- Side effect
- Co-morbidity
- Familiarity
- Cost